

EB 80 Profinet IO MANUALE D'USO

EB 80 Profinet IO USER MANUAL

INDICE

IMPIEGO AMMESSO	PAG.	4
DESTINATARI	PAG.	4
1. INSTALLAZIONE	PAG.	
1.1 INDICAZIONI GENERALI PER L'INSTALLAZIONE	PAG.	
1.2 ELEMENTI ELETTRICI DI CONNESSIONE E SEGNALAZIONE	PAG.	
1.3 COLLEGAMENTI ELETTRICI: PIEDINATURA CONNETTORI	PAG.	
1.4 ALIMENTAZIONE ELETTRICA	PAG.	
1.5 COLLEGAMENTO ALLA RETE	PAG.	6
2. MESSA IN SERVIZIO	PAG.	7
2.1 CONNESSIONI AL SISTEMA EB 80 Profinet IO	PAG.	7
2.2 INSTALLAZIONE DEL SISTEMA EB 80 IN UNA RETE Profinet IO	PAG.	
2.3 CONFIGURAZIONE DEL SISTEMA EB 80	PAG.	
2.4 OCCUPAZIONE DEGLI INDIRIZZI	PAG.	
2.5 CONFIGURAZIONE DEL SISTEMA EB 80 IN UNA RETE Profinet IO	PAG.	
3. ACCESSORI	PAG.	
3.1 INTERMEDIO - M CON ALIMENTAZIONE ELETTRICA SUPPLEMENTARE	PAG.	
3.2 CONNESSIONE ELETTRICA ADDIZIONALE - E0AD	PAG.	
3.3 MODULI DI SEGNALI - S	PAG.	
4. REGOLATORE PROPORZIONALE DI PRESSIONE	PAG.	19
4.1 IMPIEGO AMMESSO	PAG.	19
4.2 CARATTERISTICHE	PAG.	19
4.3 COLLEGAMENTO PNEUMATICO	PAG.	19
4.4 PRINCIPIO DI FUNZIONAMENTO	PAG.	
4.5 MESSA IN SERVIZIO	PAG.	
4.6 IMPOSTAZIONI	PAG.	
	PAG.	
4.7 ACCESSO AL MENÚ DA TASTIERA		
4.8 INSTALLAZIONE IN UNA RETE Profinet	PAG.	
5. DIAGNOSTICA	PAG.	
5.1 DIAGNOSTICA DEL NODO Profinet IO	PAG.	
5.2 DIAGNOSTICA DEL SISTEMA EB 80 – CONNESSIONE ELETTRICA	PAG.	
5.3 DIAGNOSTICA DEL SISTEMA EB 80 – BASE VALVOLE	PAG.	29
5.4 DIAGNOSTICA DEL SISTEMA EB 80 – MODULI SEGNALI - S	PAG.	29
5.5 DIAGNOSTICA DEL SISTEMA EB 80 – CONNESSIONE ELETTRICA ADDIZIONALE	PAG.	31
5.6 DIAGNOSTICA DEL REGOLATORE PROPORZIONALE DI PRESSIONE	PAG.	
6. LIMITI DI CONFIGURAZIONE	PAG.	
7. DATI TECNICI	PAG.	
7. DAII LEGICI	TAO.	54

IMPIEGO AMMESSO

La Connessione Elettrica Profinet IO consente il collegamento del sistema EB 80 ad una rete Profinet. Conforme alle specifiche Profinet IO offre funzioni di diagnostica. Il sistema consente di collegare fino a 128 Out per elettro piloti, 128 out digitali, 128 Input digitali, 16 out analogici, 16 input analogici, 16 input per misura di temperature e 16 Regolatori di pressione.

Supportano la comunicazione RT, Fast Start Up, Shared Device e Identification & Maintenance 1-4.

ATTENZIONE

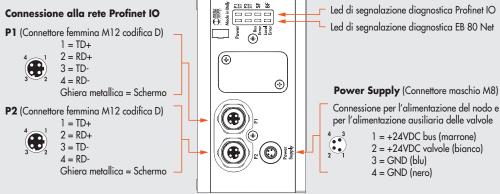
Utilizzare il Sistema EB 80 Profinet IO solo nel seguente modo:

- Per gli usi consentiti in ambito industriale;
- Sistemi completamente assemblati e in perfette condizioni;
- Osservare i valori limite specificati per dati elettrici, pressioni e temperature,
- Per l'alimentazione utilizzare esclusivamente alimentatori a norma IEC 742/EN60742/VDE0551 con resistenza minima di isolamento di 4kV (PELV).

DESTINATARI

Il manuale è rivolto esclusivamente ad esperti qualificati nelle tecnologie di controllo e automazione che abbiano esperienza nelle operazioni di installazione, messa in servizio, programmazione e diagnostica di controllori a logica programmabile (PLC) e sistemi Bus di Campo.

1. INSTALLAZIONE


1.1 INDICAZIONI GENERALI PER L'INSTALLAZIONE

Onde evitare movimenti incontrollati o danni funzionali, prima di iniziare qualsiasi intervento di installazione o manutenzione scollegare:

- Alimentazione dell'aria compressa;
- Alimentazione elettrica dell'elettronica di controllo e delle elettrovalvole / uscite.

1.2 ELEMENTI ELETTRICI DI CONNESSIONE E SEGNALAZIONE

1.3 COLLEGAMENTI ELETTRICI: PIEDINATURA CONNETTORI

1.3.1 Connettore M8 per l'alimentazione del nodo e delle uscite

- 1 = +24VDC Alimentazione nodo Profinet IO e moduli input/output 2 = +24VDC Alimentazione ausiliaria valvole
- 3 = GND
- = GND

Il dispositivo deve essere collegato con la terra utilizzando la connessione del terminale di chiusura, indicata con il simbolo PE 📥

ATTENZIONE

L'alimentazione bus, alimenta anche tutti i moduli di Segnali S collegati direttamente, al nodo, la corrente massima fornibile è 3.5 A.

ATTENZIONE

La mancanza di collegamento a terra può causare, in caso di scariche elettrostatiche, malfunzionamenti e danni irreversibili. Per garantire il grado di protezione IP65 è necessario che gli scarichi siano convogliati e che il connettore M12 non utilizzato sia tappato.

1.3.2 Connettore M12 per la connessione alla rete Profinet IO

1 = TD +

2 = RD+

3 = TD-4 = RD-

Ghiera metallica = Schermo

I connettori di rete sono M12 con codifica di tipo D secondo le specifiche Profinet IO; per il collegamento si possono utilizzare cavi Profinet IO precablati, in modo da evitare i malfunzionamenti dovuti a cablaggi difettosi, o in alternativa connettori M12 maschi metallici 4 poli Profinet IO ricablabili.

Per il collegamento al Controller può essere necessario un cavo di collegamento RJ45 – M12 maschio cod. D, che può essere realizzato con i seguenti codici del catalogo Metal Work:

0240005050 Connettore RJ45 a 4 contatti secondo IEC 60 603-7

• 0240005093 / 095 /100 Connettore diritto per bus M12 codifica D con cavo

ATTENZIONE

Per una corretta comunicazione, utilizzare esclusivamente cavi a norma Profinet IO Cat.5 / Classe D 100 MHz come quello proposto nel catalogo Metal Work. Errori di installazione possono dare luogo a errori di trasmissione con conseguenti malfunzionamenti dei dispositivi. Le cause più frequenti di malfunzionamenti dovuti alla trasmissione dati difettosa sono:

- Errato collegamento dello schermo o dei conduttori
- Cavi troppo lunghi o non adatti
- Componenti di rete per derivazioni non adatti

1.4 ALIMENTAZIONE ELETTRICA

Per l'alimentazione elettrica si utilizza un connettore M8 femmina 4 poli; l'alimentazione ausiliaria delle valvole è separata da quella del bus, per cui nel caso sia necessario, si può disinserire l'alimentazione delle valvole mentre la linea bus resta attiva. La mancanza di alimentazione ausiliaria viene segnalata dal lampeggio del Led Power e dal lampeggio contemporaneo di tutti i Led delle elettrovalvole. Il guasto viene segnalato al Controller che deve provvedere ad una adeguata gestione dell'allarme.

ATTENZIONE

Disattivare la tensione prima di inserire o disinserire il connettore (pericolo di danni funzionali)

Utilizzare solamente unità di valvole completamente assemblate.

Per l'alimentazione utilizzare esclusivamente alimentatori a norma IEC 742/EN60742/VDE0551 con resistenza minima di isolamento di 4kV (PELV).

1.4.1 Tensione di alimentazione

Il sistema consente un range di alimentazione ampio, da 12VDC -10% a 24VDC +30% (min 10.8, max 31.2).

ATTENZIONE

Una tensione maggiore di 32VDC danneggia irreparabilmente il sistema.

CADUTA DI TENSIONE DEL SISTEMA

La caduta di tensione dipende dalla corrente massima assorbita dal sistema e dalla lunghezza del cavo di connessione al sistema.

In un sistema alimentato a 24VDC con lunghezze del cavo fino a 20 m non è necessario tenere conto delle cadute di tensione.

In un sistema alimentato a 12VDC, si deve garantire che la tensione fornita sia sufficiente per il corretto funzionamento. È necessario tenere conto delle cadute di tensione dovute al numero di elettrovalvole attive, al numero di valvole comandate simultaneamente e alla lunghezza del cavo. La tensione reale che arriva agli elettropiloti deve essere almeno 10.8 VDC.

Riportiamo qui in sintesi l'algoritmo per la verifica.

Corrente massima: I max [A] = $(N^{\circ} \text{ elettropiloti comandati simultaneamente } \times 3.2) + (N^{\circ} \text{ elettropiloti attivi } \times 0.3)$

Caduta di tensione del cavo di alimentazione M8: $\Delta V = I \max [A] \times Rs [0.067\Omega/m] \times 2L [m]$ Ove Rs è la resistenza del cavo ed L la sua lunghezza.

La tensione all'ingresso del cavo, Vin deve essere almeno pari a 10.8 VDC + ΔV

Esempio:

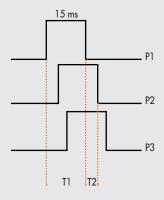
Tensione di alimentazione 12 VDC, cavo lungo 5 m, si attivano contemporaneamente 3 piloti mentre altri 10 sono già attivi:

I max =
$$\underline{(3 \times 3.2) + (10 \times 0.3)}$$
 = 1.05 A

$$\Delta V = (1.05 \times 0.067) \times (2 \times 5) = 0.70 \text{ VDC}$$

Perciò all'alimentatore serve una tensione maggiore o uguale a 10.8 + 0.7 = 11.5 VDC $Vin = 12 VDC > 11.5 \rightarrow OK$

1.4.2 Corrente assorbita


Il controllo delle elettrovalvole avviene attraverso una scheda elettronica dotata di microprocessore.

Per garantire un azionamento sicuro della valvola e ridurre il consumo energetico, il comando è di tipo "speed up", cioè all'elettropilota vengono forniti 3W per 15 millisecondi e successivamente la potenza viene ridotta gradualmente a 0.3W. Il microprocessore attraverso un comando PWM regola la corrente circolante nella bobina, che rimane costante indipendentemente dalla tensione di alimentazione e dalla temperatura, mantenendo di conseguenza inalterato il campo magnetico generato dall'elettropilota.

mantenendo di conseguenza inalterato il campo magnetico generato dall'elettropilota.

Per dimensionare correttamente l'alimentazione del sistema si deve tener conto di quante valvole dovranno essere comandate simultaneamente*
e auante sono già attive.

*Per comando simultaneo si intende l'attivazione di tutti gli elettropiloti che hanno tra loro una differenza temporale minore di 15 millisecondi.

T1 = P1 + P2 + P3 = 3 elettropiloti simultanei T2 = P2 + P3 = 2 elettropiloti simultanei

La potenza totale assorbita in ingresso è uguale alla potenza assorbita dagli elettropiloti più la potenza assorbita dall'elettronica di controllo delle basi. Per semplificare il calcolo si può considerare 3.2W la potenza di ogni elettropilota simultaneo e 0.3W la potenza di ogni elettropilota attivo.

I max [A] =
$$\frac{(N^{\circ} \text{ elettropiloti simultanei } \times 3.2) + (N^{\circ} \text{ elettropiloti attivi } \times 0.3)}{VDC}$$

Esempio:

N° elettropiloti simultanei = 10 N° elettropiloti attivi = 15 VDC = Tensione di alimentazione 24

I max =
$$\frac{(10 \times 3.2) + (15 \times 0.3)}{24}$$
 = 1.5 A

Alla corrente risultante deve essere aggiunto il consumo del terminale elettrico bus di campo uguale a 180 mA.

Tabella riassuntiva	Potenza totale assorbita durante lo Speed up	3.2 W
	Potenza totale assorbita durante la fase di mantenimento	0.3 W
	Potenza del terminale elettrico Bus di campo	4 W

La corrente massima per il comando delle elettrovalvole, erogabile dal terminale connessione elettrica Profinet è 4 A.

Nel caso in cui la corrente massima sia superiore, è necessario inserire nel sistema un Intermedio – M con alimentazione elettrica supplementare.

1.5 COLLEGAMENTO ALLA RETE

Per una corretta installazione, fare riferimento alle linee guida dell'Associazione PNO (Profibus user organization). Vedere http://www.profinet.com

1.5.1 Impiego di switch

La connessione elettrica EB 80 Profinet IO è dotata di uno switch integrato a due porte, che consente la realizzazione di reti lineari. La rete può essere suddivisa in ulteriori segmenti, utilizzando degli switch supplementari.

Assicurarsi che i dispositivi utilizzati siano conformi alle specifiche Industrial Ethernet e che supportino tutte le funzioni Profinet IO.

2. MESSA IN SERVIZIO

ATTENZIONE

Disattivare la tensione prima di inserire o disinserire i connettori (pericolo di danni funzionali).

Collegare il dispositivo a terra, mediante un conduttore appropriato.

La mancanza di collegamento a terra può causare, in caso di scariche elettrostatiche, malfunzionamenti e danni irreversibili.

Utilizzare solamente unità di valvole completamente assemblate.

2.1 CONNESSIONI AL SISTEMA EB 80 Profinet IO

Collegare il dispositivo a terra.

Collegare il connettore di ingresso P1 alla rete Profinet IO.

Collegare il connettore di uscita P2 al dispositivo successivo. Altrimenti chiudere il connettore con l'apposito tappo per assicurare la protezione IP65. Collegare il connettore di alimentazione. L'alimentazione del bus è separata dall'alimentazione delle valvole.

È possibile disattivare l'alimentazione delle valvole mantenendo attiva la comunicazione con il controllore Profinet IO.

2.2 INSTALLAZIONE DEL SISTEMA EB 80 IN UNA RETE Profinet IO

2.2.1 File di configurazione GSDML

Per installare correttamente il sistema EB 80 in una rete Profinet IO, è necessario importare il file GSDML EB80series nel software di

programmazione utilizzato, disponibile sul sito internet Metal Work. Il file di configurazione GSDML del sistema EB 80 Profinet IO, descrive le sue caratteristiche. Deve essere importato nell'ambiente di sviluppo del controllore, per essere identificato come un dispositivo Profinet IO e configurare correttamente gli Input /Output.

2.2.2 Assegnazione del nome e dell'indirizzo IP

Come tutti i componenti Ethernet, il sistema EB 80 Profinet IO ha un indirizzo MAC univoco memorizzato in modo permanente. In una rete Profinet IO, è necessario assegnare un nome univoco ad ogni dispositivo del progetto. Tutti i dispositivi vengono identificati attraverso questo nome che è memorizzato in modo permanente ed è disponibile dopo l'accensione.

Impostazioni di fabbrica:

Nome del dispositivo Profinet IO: EB80series Indirizzo IP: 0.0.0.0

Subnet Mask: 0.0.0.0

Per l'assegnazione del nome utilizzare una delle applicazioni disponibili con i software di programmazione.

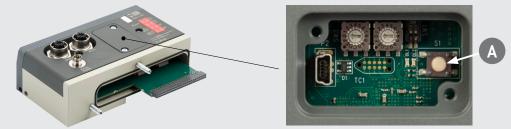
Il Controllore di rete provvederà automaticamente all'assegnazione dell'indirizzo IP.

La corretta comunicazione tra il Controllore e il sistema EB 80 collegato avviene soltanto se a quest'ultimo è stato assegnato lo stesso nome specificato nella configurazione del Controllore. In caso contrario la comunicazione Profinet IO non si stabilisce. Il difetto viene segnalato dai Led di diagnostica Profinet IO.

È possibile assegnare al dispositivo un indirizzo IP fisso.

2.3 CONFIGURAZIONE DEL SISTEMA EB 80

Prima dell'utilizzo il sistema EB 80 deve essere configurato tramite una procedura che permetta di conoscerne la composizione. Procedere nel seguente modo:


- scollegare il connettore M8 di alimentazione elettrica;

aprire lo sportello del modulo;
 premere il pulsante "A" e riconnettere il connettore M8 di alimentazione, mantenendo premuto il pulsante "A" fino al lampeggio contemporaneo di tutti i Led del sistema, basi valvole, moduli di segnale ed isole addizionali.
 Il sistema EB 80 è caratterizzato da un'elevata flessibilità. È sempre possibile modificare la configurazione aggiungendo, togliendo o modificando le

basi per valvole, moduli di segnale o isole addizionali.

La configurazione deve essere effettuata dopo ogni modifica del sistema.

Nel caso in cui siano installate isole con connessione elettrica addizionale o Moduli 6 Output digitali M8 + alimentazione elettrica, per essere configurati correttamente, tutti i moduli devono essere alimentati.

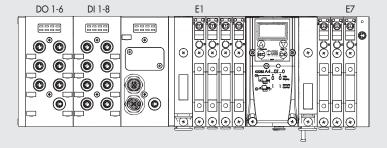
ATTENZIONE

In caso di successive modifiche alla configurazione iniziale, potrebbero verificarsi degli spostamenti degli indirizzi delle elettrovalvole. Lo spostamento avviene nei seguenti casi:

- Inserimento di basi per valvole tra quelle già esistenti
- Sostituzione di una base per valvole con una di altro tipo Eliminazione di una o più basi per valvole intermedie
- Aggiunta o eliminazione di isole con connessione elettrica Addizionale tra isole preesistenti. L'aggiunta o eliminazione di isole addizionali in coda al sistema non comporta lo spostamento degli indirizzi.
- I nuovi indirizzi sono successivi a quelli preesistenti.

 Aumento del numero di byte delle basi per valvole (modulo pneumatico) nel caso in cui siano già configurati dei moduli di uscita digitale.

2.4 OCCUPAZIONE DEGLI INDIRIZZI


Il volume di indirizzi messo a disposizione del Controller è il seguente:

- 16 byte per basi per valvole (modulo pneumatico), massimo 128 elettropiloti;

- 16 byte per Moduli segnale di uscite digitali, massimo 128 uscite digitali;
 16 byte per Moduli segnale di uscite digitali, massimo 128 uscite digitali;
 16 byte per Moduli segnale di ingressi digitali, massimo 128 ingressi digitali;
 32 byte per Moduli segnale di uscite analogiche, massimo 16 uscite analogiche;
 3 byte di uscita per Moduli segnale di ingressi analogici, massimo 16 ingressi analogici;
- 32 byte per Moduli segnale di ingressi analogici per la misura di temperature, massimo 16 ingressi analogici;

- 2 byte di uscita per il set della pressione dei Regolatori di Pressione, massimo 16 Regolatori di pressione, 32 byte; 2 byte di ingresso per la lettura della pressione dei Regolatori di Pressione massimo 16 Regolatori di pressione, 32 byte; 1 byte di ingresso per la funzione pressostato dei Regolatori di Pressione (bit 0) massimo 16 Regolatori di pressione, 16 byte;

• 10 byte di ingresso per Moduli segnali 16 I/O configurabili, massimo 4 moduli. Il sistema EB 80 può essere configurato secondo le effettive necessità, inserendo nella configurazione del sistema di controllo, moduli da 1 byte per le uscite e gli ingressi digitali, moduli da 8 byte per le uscite e gli ingressi analogici, 3 byte di ingresso e 2 di uscita per ogni Regolatore di pressione. L'indirizzamento di tutti i moduli è sequenziale.

2.5 CONFIGURAZIONE DEL SISTEMA EB 80 IN UNA RETE Profinet IOSelezionare dal catalogo hardware del sistema di sviluppo, il modulo di intestazione, inserirlo nella configurazione e assegnarlo all'IO Controller. Al dispositivo vengono assegnati un byte di uscita e il byte di stato che indica lo stato diagnostico del sistema EB 80.

2.5.1 Configurazione del numero massimo di elettropiloti
Per evitare l'occupazione di indirizzi non utilizzati, la configurazione del numero massimo di elettropiloti può essere effettuata, selezionando dal catalogo hardware, nella cartella denominata Modulo pneumatico, il numero di output superiore, più vicino a quello realmente installato. La scelta può essere effettuata tra 16 moduli, ovvero tra 8 e 128 output. Per modificare il numero di uscite, eliminare il modulo di output e sostituirlo con quello più appropriato. Nel caso venga configurato un modulo superiore a quello realmente presente, il sistema funziona comunque correttamente. Nel caso venga configurato un modulo inferiore a quello realmente presente, il Controller genera un errore e il sistema EB 80 non attiva le

2.5.2 Assegnazione dei bit di dati alle uscite delle basi per elettrovalvole

bit 0	bit 1	bit 2	bit 3	•••	bit 127
Out 1	Out 2	Out 3	Out 4		Out 128

2.5.3 Indirizzi di uscita degli elettropiloti, esempi:Base per valvole a 3 o 4 comandi – è possibile montare solo valvole a un elettropilota

Tipo di valvola	Valvola a 1 elettropilota	Valvola a 1elettropilota	Falsa valvola o Bypass	Valvola a 1 elettropilota	Falsa valvola o Bypass	Valvola a 1 elettropilota
Elettro pilota 1	14	14	-	14	-	14
Uscita	Out 1	Out 2	Out 3	Out 4	Out 5	Out 6

Base per valvole a 6 o 8 comandi – è possibile montare valvole a uno o due elettropiloti

Tipo di valvola	Valvola a 2 elettropiloti	Valvola a 1 elettropilota	Falsa valvola o Bypass	Valvola a 1 elettropilota	Falsa valvola o Bypass	Valvola a 2 elettropiloti
Elettro pilota 1	14	14	-	14	-	14
Elettro pilota 2	12	-	-	-	-	12
11. 2	Out 1	Out 3	Out 5	Out 7	Out 9	Out 11
Uscita	Out 2	Out 4	Out 6	Out 8	Out 10	Out 12

Ogni base occupa tutte le posizioni.

Il comando di uscite non connesse, genera un allarme di elettropilota interrotto.

2.5.4 Configurazione dei Parametri dell'unità

2.5.4.1 Stato uscite in sicurezza

Questa funzione consente di definire lo stato degli elettropiloti nel caso di comunicazione interrotta con il Controller.

Sono possibili tre diverse modalità, selezionabili nella pagina "Proprietà generali → Parametri dell'unità → Parametri di sistema del dispositivo EB 80":

• Output Reset (default), tutti gli elettropiloti vengono disattivati.

• Hold Last State, tutti gli elettropiloti mantengono lo stato in cui si trovavano prima dell'interruzione della comunicazione con il Controller.

• Output Fault mode, è possibile selezionare il comportamento di ogni singolo pilota tra tre modalità:

- Output Reset (default), l'elettropilota viene disattivato.

- Hold Last State, l'elettropilota mantiene lo stato in cui si trovava prima dell'interruzione della comunicazione con il Controller.
- Output Set, al momento dell'interruzione della comunicazione con il Controller l'elettropilota viene Attivato.

La funzione può essere impostata selezionando la riga corrispondente alle uscite del modulo pneumatico, nella pagina "Proprietà generali → Parametri dell'unità → Stato di sicurezza".

Al ripristino della comunicazione, la gestione dello stato degli elettropiloti viene ripreso dal Controller. Per evitare movimenti incontrollati, il Controller deve provvedere ad una adeguata gestione dell'evento.

2.5.4.2 Parametri all'avvio

- Parametri esterni/default: ad ogni accensione il sistema deve essere inizializzato dal Controller che provvede ad inviare tutti i parametri di configurazione, come per esempio il tipo di ingresso/uscita ecc.
- Parametri salvati: alla prima accensione i parametri inviati dal Controller vengono salvati ed utilizzati per tutte le successive accensioni fino ad una nuova scrittura da parte del Controller.

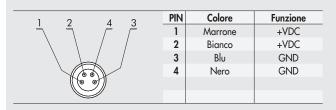
2.5.4.3 Visualizzazione ingressi analogici

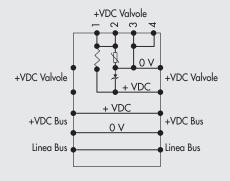
Consente di scegliere tra due modalità di visualizzazione dei due byte che contengono il valore analogico.

- Logica Motorola o big-endian: memorizzazione che inizia dal byte più significativo per finire col meno significativo (default).
- Logica INTEL o little-endian: memorizzazione che inizia dal byte meno significativo per finire col più significativo.

2.5.4.4 Formato dati degli input analogici
Consente di impostare il formato dei dati degli input analogici in due modalità:
16 bit (Sign + 15 bit) il valore analogico è compreso tra +32767 e -32768 che si ottiene con il massimo valore analogico ammesso dal tipo di ingresso. I valori sono riportati in tabella.

	Valore analogico	Valore digitale	Segnalazione
	+11.7 VDC	32767	Overflow
Tipo di ingresso -10 + 10 VDC	+10 VDC -10 VDC	28095 -28095	Range nominale
	-11.7 VDC	-32768	Underflow
	+5.8 VDC	32767	Overflow
Tipo di ingresso -5 + 5 VDC	+5 VDC -5 VDC	28095 -28095	Range nominale
	-5.8 VDC	-32768	Underflow
	+5.8 VDC	32767	Overflow
Tipo di ingresso 1 + 5 VDC	+5 VDC +1 VDC	28095 5620	Range nominale
	0 VDC	0	Underflow
	+23 mA	32767	Overflow
Tipo di ingresso -20 mA + 20 mA	+20 mA -20 mA	28095 -28095	Range nominale
	-23 mA	-32768	Underflow
	+23 mA	32767	Overflow
Tipo di ingresso 4 mA + 20 mA	+20 mA +4 mA	27307 5513	Range nominale
	0 mA	0	Underflow


• Linear scaled – il valore analogico misurato è riferito al valore impostato nel campo "Fondo scala utente" delle "Proprietà Generali" – Parametri dell'unità del modulo analogico. Può essere impostato s'ingolarmente per ogni canale analogico.


3. ACCESSORI

3.1 INTERMEDIO - M CON ALIMENTAZIONE ELETTRICA SUPPLEMENTARE
Tra le basi delle valvole possono essere installati dei moduli intermedi con alimentazione elettrica supplementare.

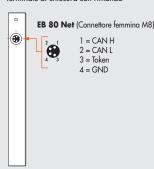
Possono servire come alimentazione elettrica supplementare, quando il numero di elettropiloti azionato contemporaneamente è elevato, oppure per separare elettricamente alcune parti dell'isola da altre, per esempio quando si vuole interrompere l'alimentazione elettrica di alcune elettrovalvole all'apertura di una protezione della macchina, o alla pressione di un pulsante di emergenza. Solo le elettrovalvole a valle del modulo sono alimentate dallo stesso. Sono disponibili varie tipologie con funzioni pneumatiche differenti.

La corrente massima per il comando delle elettrovalvole, erogabile dall'intermedio con alimentazione elettrica supplementare è 8 A.

ATTENZIONE

Non può essere utilizzata come funzione di sicurezza, in quanto garantisce solo che non venga effettuata nessuna attivazione elettrica. Attivazioni manuali o guasti possono causare movimenti involontari. Per maggior sicurezza, scaricare l'impianto pneumatico prima di eseguire interventi pericolosi.

3.2 CONNESSIONE ELETTRICA ADDIZIONALE - E0AD

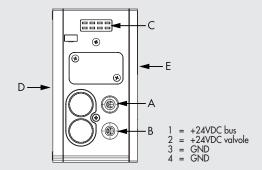

La connessione elettrica Addizionale - E permette di collegare ad un unico nodo Profinet diversi sistemi EB 80. Per fare questo l'isola principale deve essere dotata di un terminale cieco tipo C3, dotato di un connettore M8. Per consentire il collegamento di più sistemi, tutte le isole addizionali devono essere dotate del terminale cieco C3, tranne l'ultima che deve montare il terminale cieco C2, dotato dell'apposita terminazione per la linea

Opzionalmente, se è necessaria una predisposizione per futuri ampliamenti, è possibile montare un terminale cieco C3 anche sull'ultima isola, in questo caso è necessario inserire l'apposito connettore M8 di terminazione

Per il corretto funzionamento di tutto il sistema EB 80 Net, utilizzare esclusivamente i cavi M8-M8 precablati, schermati e twistati, presenti sul catalogo Metal Work.

La connessione elettrica Addizionale, consente di collegare basi per valvole e moduli di segnale - S, esattamente come per l'isola con nodo Profinet.

Terminale di chiusura con rimando


A Connessione alla rete EB 80 Net

B Connessione per l'alimentazione della Connessione elettrica Addizionale e per l'alimentazione ausiliaria delle valvole

C Led di segnalazione diagnostica EB 80

D Connessione ai moduli Segnale

E Connessione alle basi per valvole

3.2.1.1 Collegamenti elettrici: piedinatura connettore M8 per l'alimentazione della Connessione elettrica Addizionale 1 = 24VDC Alimentazione Connessione elettrica Addizionale e moduli di Input/Output

2 = 24VDC Alimentazione ausiliaria valvole

3 = GND

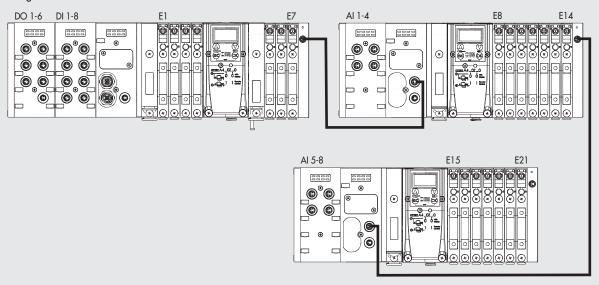
Il dispositivo deve essere collegato con la terra utilizzando la connessione del terminale di chiusura, indicata con il simbolo PE 🛓

L'alimentazione bus, alimenta anche tutti i moduli di Segnali S collegati direttamente, al nodo, la corrente massima fornibile è 3.5 A.

ATTENZIONE

La mancanza di collegamento a terra può causare, in caso di scariche elettrostatiche, malfunzionamenti e danni irreversibili. Per garantire il grado di protezione IP65 è necessario che gli scarichi siano convogliati e che il connettore M12 non utilizzato sia tappato.

3.2.2 Indirizzamento della Connessione elettrica Addizionale - EOAD


L'indirizzamento di tutti i moduli è sequenziale.

- L'indirizzamento degli elettropiloti delle valvole, inizia dal primo elettropilota del nodo Profinet e finisce con l'ultimo elettropilota dell'ultima isola Addizionale collegata.
- L'indirizzamento dei moduli S di ingressi digitali, inizia dal primo modulo collegato al nodo Profinet e finisce con l'ultimo modulo S di ingressi digitali dell'ultima isola Addizionale collegata.
- L'indirizzamento dei moduli S di uscite digitali, inizia dal primo modulo collegato al nodo Profinet e finisce con l'ultimo modulo S di uscite digitali dell'ultima isola Addizionale collegata.

L'indirizzamento dei moduli - S di ingressi analogici, inizia dal primo modulo collegato al nodo Profinet e finisce con l'ultimo modulo - S di ingressi analogici dell'ultima isola Addizionale collegata.

L'indirizzamento dei moduli - S di uscite analogiche, inizia dal primo modulo collegato al nodo Profinet e finisce con l'ultimo modulo - S di uscite analogiche dell'ultima isola Addizionale collegata.

 L'indirizzamento dei Regolatori di pressione, inizia dalla prima unità del nodo Profinet e finisce con l'ultima unità dell'ultima isola Addizionale collegata.

3.3 MODULI DI SEGNALI - S

I sistemi EB 80 sono corredati da numerosi moduli di gestione dei segnali di ingresso o uscita.

Possono essere inseriti sia in sistemi con connessione elettrica Profinet che in sistemi con connessione elettrica Addizionale. I moduli di segnali - S possono essere aggiunti nella configurazione del sistema di controllo, selezionandoli dal catalogo hardware alla voce modulo. Sono disponibili moduli di ingressi e uscite digitali e moduli di ingressi e uscite analogiche, moduli per la misura di temperature.

3.3.1 Modulo Input digitali

Modulo 8 Input digitali M8: ogni modulo può gestire fino a 8 ingressi digitali.

Modulo morsettiera 16 Input digitali: ogni modulo può gestire fino a 16 ingressi digitali.

Ogni ingresso dispone di alcuni parametri configurabili singolarmente, disponibili selezionando il modulo nella "Vista generale Dispositivi → Proprietà → Parametri dell'Unità".

3.3.1.1 Tipo di ingressi e alimentazione

Possono essere collegati sensori digitali a 2 o 3 fili, PNP o NPN. L'alimentazione dei sensori proviene dall'Alimentazione nodo Profinet IO o dall'alimentazione della Connessione elettrica Addizionale, in questo modo i sensori rimangono attivi anche se viene interrotta l'alimentazione ausiliaria delle valvole.

3.3.1.2 Collegamenti elettrici

Piedinatura connettore M8

1 = +VDC (Alimentazione sensore) 3 = GND (Alimentazione sensore)

4 = Input

Piedinatura connettore morsettiera

Input X1 - X5 - X9 - X13 Input X2 - X6 - X10 - X14 Input X3 - X7 - X11 - X15 Input X4 - X8 - X12 - X16 + Input Input 0 Input 0 Alimentazione sensore

3.3.1.3 Polarità

È possibile selezionare la polarità di ogni singolo ingresso:

- PNP, il segnale è attivo quando il pin di segnale è collegato al +VDC. NPN, il segnale è attivo quando il pin di segnale è collegato allo 0VDC.

Il Led di segnalazione è attivo quando l'ingresso è attivo.

3.3.1.4 Stato di attivazione

È possibile selezionare lo stato di attivazione di ogni singolo ingresso:

- Normalmente Aperto, il segnale è attivo quando il sensore è attivo. Il Led è attivo quando il sensore è attivo.
- Normalmente Chiuso, il segnale è attivo quando il sensore è disattivo. Il Led è attivo quando il sensore è disattivo.

3.3.1.5 Persistenza del segnale

La funzione consente di mantenere il segnale di ingresso per un tempo minimo corrispondente al valore impostato, consentendo al PLC di rilevare segnali con tempi di persistenza bassi.

- 0 ms: filtro disattivo.
- 15 ms: segnali con tempi di attivazione/disattivazione minori di 15 ms, vengono mantenuti attivi per 15 ms.
 50 ms: segnali con tempi di attivazione/disattivazione minori di 50 ms, vengono mantenuti attivi per 50 ms.
- 100 ms: segnali con tempi di attivazione/disattivazione minori di 100 ms, vengono mantenuti attivi per 100 ms.

3.3.1.6 Filtro di Input

È un filtro temporale impostabile singolarmente per ogni singolo ingresso, che consente di filtrare e NON rilevare segnali con durata inferiore al tempo impostato. La funzione può essere utilizzata per evitare di rilevare falsi segnali.

- 3 ms: non vengono rilevati cambiamenti di stato del segnale inferiori a 3 ms.
 10 ms: non vengono rilevati cambiamenti di stato del segnale inferiori a 10 ms.
- 20 ms: non vengono rilevati cambiamenti di stato del segnale inferiori a 20 ms.

3.3.2 Modulo Output digitali

Modulo 8 Output digitali M8: ogni modulo può gestire fino a 8 uscite digitali.

Modulo morsettiera 16 Output digitali: ogni modulo può gestire fino a 16 uscite digitali.

Ogni uscita dispone di alcuni parametri configurabili singolarmente, disponibili selezionando il modulo nella "Vista generale Dispositivi → Proprietà → Parametri dell'Unità".

3.3.2.1 Tipo di uscita e alimentazione

Possono essere utilizzate per controllare diversi dispositivi digitali. I dispositivi compatibili comprendono:

- Solenoidi
- Contattori
- Indicatori

L'alimentazione delle uscite proviene dall'Alimentazione nodo Profinet IO o se presente, dal Modulo 6 Output digitali M8 + alimentazione

Verificare che le correnti di picco e continuative dei dispositivi collegati non superino quelle fornibili su ogni singolo connettore e quella massima del modulo.

Se il modulo è collegato direttamente alla Connessione elettrica Profinet IO, l'alimentazione è comune all'alimentazione del nodo Profinet IO. Per evitare danni permanenti al dispositivo, è necessario inserire una adeguata protezione esterna.

3.3.2.2 Collegamenti elettrici

Piedinatura connettore M8

Piedinatura connettore morsettiera

- 1 = +VDC (Comune per OUT NPN) 3 = GND (Comune per OUT PNP)
- 14 = Output
- Output X1 X5 X9 X13 Output X2 X6 X10 X14 Output X3 X7 X11 X15 Output X4 X8 X12 X16 + Output 0 + Output 0 + Output 0 + Output 0

3.3.2.3 Polarità

È possibile selezionare la polarità di ogni singola uscita:

- PNP, Quando l'uscita è attiva sul pin di segnale è presente il +VDC. Per alimentare un carico è necessario collegare l'altro capo allo 0VDC.
 NPN, Quando l'uscita è attiva sul pin di segnale è presente lo 0VDC. Per alimentare un carico è necessario collegare l'altro capo al +VDC.

3.3.2.4 Stato di attivazione È possibile selezionare lo stato di attivazione di ogni singola uscita:

- Normalmente Aperto, l'uscita è attiva quando è comandata dal sistema di controllo. Il Led è attivo quando l'uscita è comandata.
- Normalmente Chiuso, l'uscita è attiva quando NON è comandata dal sistema di controllo. Il Led è attivo quando l'uscita NON è comandata.

Questa funzione consente di definire lo stato delle uscite nel caso di comunicazione interrotta con il Controller.

- Output Reset (default), tutte le uscite vengono disattivate.
 Hold Last State, tutte le uscite mantengono lo stato in cui si trovavano prima dell'interruzione della comunicazione con il Controller.
 Output Fault mode, è possibile selezionare il comportamento di ogni singola uscita tra tre modalità:

 Output Reset (default), l'uscita viene disattivata.

- Hold Last State, l'uscita mantiene lo stato in cui si trovava prima dell'interruzione della comunicazione con il Controller.
- Output Set, al momento dell'interruzione della comunicazione con il Controller l'uscita viene attivata.

Al ripristino della comunicazione, la gestione dello stato degli elettropiloti viene ripreso dal Controller. Per evitare movimenti incontrollati, il Controller deve provvedere ad una adeguata gestione dell'evento.

3.3.2.6 Guasti e allarmi

Il modulo è protetto da sovraccarichi e da cortocircuito su ogni singola uscita. Il reset della segnalazione è automatico. L'uscita viene comandata brevemente ogni 30 sec per verificare che il guasto sia stato rimosso ed effettuare il reset automatico. Per evitare movimenti incontrollati, il Controller deve provvedere ad una adeguata gestione dell'evento.

3.3.3 Modulo 6 Output digitali M8 + alimentazione elettrica - Dual Power Supply
Ogni modulo può gestire fino a 6 uscite digitali, è configurabile esattamente come il Modulo 8 Output digitali M8.
Dispone di un connettore per l'alimentazione ausiliaria, che consente di aumentare la corrente fornibile dal modulo e dal sistema. L'alimentazione delle uscite digitali è separata dall'alimentazione del BUS, in questo modo è possibile interrompere l'alimentazione delle uscite in modo sicuro, tramite barriere o protezioni, mantenendo la comunicazione con il terminale BUS attiva. L'alimentazione BUS deve essere la stessa che alimenta il terminale BUS o ADD. L'alimentazione BUS alimenta tutti i moduli successivi.

3.3.3.1 Alimentazione ausiliaria

1 2 4 3	PIN	Colore	Funzione
	1	Marrone	+VDC alimentazione BUS
\ \ / /	2	Bianco	+VDC alimentazione OUT Digitali
	3	Blu	GND
	4	Nero	GND

La corrente erogata è la somma delle correnti erogate dal Modulo 6 Output digitali M8 più quella erogata da tutti i Moduli di Segnali successivi, collegati prima di un altro eventuale Modulo 6 Output digitali M8 + Alimentazione elettrica. La massima corrente totale erogabile è 4 A.

3.3.4 Modulo 16 Input Output digitali configurabili
Ogni modulo dispone di 8 connettori M8 4 poli oppure M12 5 poli per un totale di 16 canali, liberamente configurabili singolarmente, come Ingressi Digitali oppure come Uscite Digitali.

Inoltre, gli ingressi 1, 2 e 3, 4 possono essere configurati come canali per la lettura di Encoder con frequenza massima di 300 Hz, come per esempio gli Encoder di motori a corrente continua.

3.3.4.1 Occupazione degli indirizzi

10 Byte di ingresso

Byte 0	Ingressi digitali X1X8
Byte 1	Ingressi digitali X9X16
DWord 2 (byte 2, 3, 4, 5)	lettura encoder 1
DWord 6 (byte 6, 7, 8, 9)	lettura encoder 2

3.3.4.2 Collegamenti elettrici

Piedinatura connettore M8 4 Poli

1 = +VDC2 = X2, X4, X6, X8, X10, X12, X14, X16 $3 = \overrightarrow{GND}$ 4 = X1, X3, X5, X7, X9, X11, X13, X15

3 Byte di uscita

Byte 0	Uscite digitali X1X8
Byte 1	Uscite digitali X9X16
Byte 2	Reset Encoder
	Bit 0 reset Encoder 1
	Bit 1 reset Encoder 2

Piedinatura connettore M12 5 Poli

1 = +VDC2 = X2, X4, X6, X8, X10, X12, X14, X163 = GND4 = X1, X3, X5, X7, X9, X11, X13, X155 = NC

3.3.4.3 Assegnazione dei bit di dati alle porte di connessione

I/O Byte 0

-							
Bit O	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
Porta X1	Porta X2	Porta X3	Porta X4	Porta X5	Porta X6	Porta X7	Porta X8
Pin 4	Pin 2						

I/O Byte 1

E	3it 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
Po	rta X9	Porta X10	Porta X11	Porta X12	Porta X13	Porta X14	Porta X15	Porta X16
P	in 4	Pin 2	Pin 4	Pin 2	Pin 4	Pin 2	Pin 4	Pin 2

3.3.4.4 Tipo di ingressi e alimentazione

Possono essere collegati sensori digitali a 2 o 3 fili, PNP. L'alimentazione dei sensori proviene dall'Alimentazione bus o dall'alimentazione della Connessione elettrica Addizionale, in questo modo i sensori rimangono attivi anche se viene interrotta l'alimentazione ausiliaria delle valvole. Ogni ingresso dispone di alcuni parametri configurabili singolarmente, disponibili selezionando il modulo nella "Vista generale Dispositivi → Proprietà → Parametri dell'Unità".

Ștato di attivazione

E possibile selezionare lo stato di attivazione di ogni singolo ingresso:

- Normalmente Aperto, il segnale è attivo quando il sensore è attivo. Il Led è attivo quando il sensore è attivo.
- Normalmente Chiuso, il segnale è attivo quando il sensore è disattivo. Il Led è attivo quando il sensore è disattivo.

Persistenza del segnale

La funzione consente di mantenere il segnale di ingresso per un tempo minimo corrispondente al valore impostato, consentendo al PLC di rilevare segnali con tempi di persistenza bassi.

- 0 ms: filtro disattivo.
- 15 ms; segnali con tempi di attivazione/disattivazione minori di 15 ms, vengono mantenuti attivi per 15 ms.
- 50 ms; segnali con tempi di attivazione/disattivazione minori di 50 ms, vengono mantenuti attivi per 50 ms.
- 100 ms: segnali con tempi di attivazione/disattivazione minori di 100 ms, vengono mantenuti attivi per 100 ms.

È un filtro temporale impostabile singolarmente per ogni singolo ingresso, che consente di filtrare e NON rilevare segnali con durata inferiore al tempo impostato. La funzione può essere utilizzata per evitare di rilevare falsi segnali.

• 0 ms: filtro disattivo.

- 3 ms: non vengono rilevati cambiamenti di stato del segnale inferiori a 3 ms.
- 10 ms: non vengono rilevati cambiamenti di stato del segnale inferiori a 10 ms.
- 20 ms: non vengono rilevati cambiamenti di stato del segnale inferiori a 20 ms.

3.3.4.5 Tipo di uscita ed alimentazione

Ogni uscita dispone di alcuni parametri configurabili singolarmente, disponibili selezionando il modulo nella "Vista generale Dispositivi → Proprietà → Parametri dell'Unità".

Possono essere utilizzate per controllare diversi dispositivi digitali. Il tipo di segnale è PNP.

- Solenoidi
- Contattori
- Indicatori

L'alimentazione delle uscite proviene dall'Alimentazione nodo Profinet IO o se presente, dal Modulo 6 Output digitali M8 + alimentazione elettrica precedente.

Verificare che le correnti di picco e continuative dei dispositivi collegati non superino quelle fornibili su ogni singolo connettore e quella massima del modulo.

Se il modulo è collegato direttamente alla Connessione elettrica Profinet IO, l'alimentazione è comune all'alimentazione del nodo Profinet IO. Per evitare danni permanenti al dispositivo, è necessario inserire una adeguata protezione.

Stato di attivazione

È possibile selezionare lo stato di attivazione di ogni singola uscita:

- Normalmente Aperto, l'uscita è attiva quando è comandata dal sistema di controllo. Il Led è attivo quando l'uscita è comandata.
- Normalmente Chiuso, l'uscita è attiva quando NON è comandata dal sistema di controllo. Il Led è attivo quando l'uscita NON è comandata.

Stato di sicurezza

Questa funzione consente di definire lo stato delle uscite nel caso di comunicazione interrotta con il Controller.

- Output Reset (default), tutte le uscite vengono disattivate.
- Hold Last State, tutte le uscite mantengono lo stato in cui si trovavano prima dell'interruzione della comunicazione con il Controller.
- Output Fault mode, è possibile selezionare il comportamento di ogni singola uscita tra tre modalità:
 Output Reset (default), l'uscita viene disattivata.
- Hold Last State, l'uscita mantiene lo stato in cui si trovava prima dell'interruzione della comunicazione con il Controller.
- Output Set, al momento dell'interruzione della comunicazione con il Controller l'uscita viene attivata.

Al ripristino della comunicazione, la gestione dello stato degli elettropiloti viene ripreso dal Controller.

Per evitare movimenti incontrollati, il Controller deve provvedere ad una adeguata gestione dell'evento.

3.3.4.6 Configurazione dei parametri Encoder Inversione del conteggio

Questa funzione consente di invertire il conteggio degli impulsi mantenendo lo stesso senso di rotazione del motore.

- = 0 Nessuna inversione
- = 1 Inversione conteggio

Modo di azzeramento conteggio

Questa funzione consente di azzerare il conteggio degli impulsi tramite un comando PLC oppure da un ingresso del modulo.

PLC = il reset si effettua attivando i bit 0 (Ch1) e 1 (Ch2) del Byte di uscita 2

N° input 5...16 i reset si effettua attivando l'ingresso impostato

3.3.4.7 Guasti e allarmi

Il modulo è protetto da sovraccarichi e da cortocircuito su ogni singola uscita. Il reset della segnalazione è automatico. L'uscita viene comandata brevemente ogni 30 sec per verificare che il guasto sia stato rimosso ed effettuare il reset automatico. Per evitare movimenti incontrollati, il Master deve provvedere ad una adeguata gestione dell'evento.

3.3.5 Modulo 4 Input analogici M8

Ogni modulo può gestire fino a 4 ingressi analogici liberamente configurabili sia in tensione che in corrente.

Converte i segnali con una risoluzione di 15 bit più il segno, i valori numerici disponibili al sistema di controllo, sono compresi tra -32768 e

Dispongono di alcuni parametri configurabili singolarmente, disponibili selezionando il modulo nella "Vista generale Dispositivi → Proprietà → Parametri dell'Unità"

Il Modulo è in grado di riconoscere valori fuori range e nel caso di sensori 4/20 mA oppure 1/5 VDC la disconnessione del sensore stesso, dovuta per esempio alla rottura del cavo.

3.3.5.1 Collegamenti elettrici: piedinatura connettore M8

Il valore della tensione di alimentazione +VDC è corrispondente alla tensione di Alimentazione nodo Profinet IO o della Connessione elettrica Addizionale.

1 = +VDC2 = + Analog IN3 = GND4 = - Analog INGhiera connettore = Schermo

3.3.5.2 Range Segnale

Consente di configurare ogni singolo canale con un tipo di segnale di ingresso. Sono disponibili le seguenti tipologie:

0..10Vdc -10Vdc / +10Vdc 0..5Vdc -5Vdc/+5Vdc 1..5Vdc 0...20mA -20mA/+20mA

Se il canale non viene utilizzato, per evitare disturbi, disattivarlo selezionando OFF.

3.3.5.3 Filtro valore misurato

Introduce un filtro sul valore misurato, per rendere più stabile la lettura. Viene effettuata una media mobile calcolata sul numero di campioni scelto. Aumentando il numero di valori si rallenta la lettura.

3.3.5.4 Fondo Scala utente

L'impostazione di questo valore consente di modificare la scala dei valori numerici inviati al sistema di controllo in funzione del valore del segnale analogico. Deve essere abilitato impostando "Linear scaled" nel campo Formato dati analogici – Parametri generali –

Parametri dell'unità del modulo EB80series. Consente di impostare valori fino a +32767. Il valore impostato vale sia per i segnali positivi che per quelli negativi. Ovvero se il range di segnale è impostato per esempio 0/10VDC il valore massimo sarà +32767.

Se il range di segnale è impostato +/- 10VDC i valori massimi saranno +32767 e -32768.

Questa funzione consente di ottenere una lettura in formato ingegneristico. Ovvero se al canale analogico è collegato un trasduttore di pressione 0/10 bar e il fondo scala utente è impostato a 10000, il valore del segnale è espresso in mbar.

3.3.5.5 Collegamento dei sensori

Sensori in tensione a 3 fili

Pin 1 = +VDC Alimentazione sensore

Pin 2 = + Ingresso analogico

Pin 3 = GND

Pin 4 = NC

Sensori in corrente a 2 fili

Pin 1 = +VDC Alimentazione sensore

Pin 2 = + Ingresso analogico

Pin 3 = NC

Pin 4 = NC

Sensori in tensione a 4 fili (differenziali)

Pin 1 = +VDC Alimentazione sensore

Pin 2 = + Ingresso analogico

Pin 3 = GND

Pin 4 = - Ingresso analogico

Sensori in corrente a 3 fili

Pin 1 = +VDC Alimentazione sensore

Pin 2 = + Ingresso analogico

Pin 3 = GND

Pin 4 = NC

3.3.6 Modulo 4 Output analogici M8

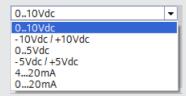
Ogni modulo può gestire fino a 4 uscite analogiche liberamente configurabili sia in tensione che in corrente.

Converte i segnali con una risoluzione di 15 bit più il segno, i valori numerici impostabili nel sistema di controllo, sono compresi tra -32768 e +32767. Il formato dati è Linear Scaled.

Dispongono di alcuni parametri configurabili singolarmente, disponibili selezionando il modulo nella "Vista generale Dispositivi → Proprietà → Parametri dell'Unità".

3.3.6.1 Collegamenti elettrici: piedinatura connettore M8

1 = +VDC2 = + Analog OUT


3 = GND

4 = Shield

Il valore della tensione di alimentazione +VDC è corrispondente alla tensione di Alimentazione nodo Profinet IO o della Connessione elettrica Addizionale.

3.3.6.2 Ampiezza del Segnale

Consente di configurare ogni singolo canale con un tipo di segnale di uscita. Sono disponibili le seguenti tipologie:

3.3.6.3 Monitor Valore minimo – Monitor Valore massimo

L'abilitazione di queste due funzioni consente di non superare i valori impostati nei campi Valore minimo e Valore Massimo. Può essere utilizzato nel caso non si voglia mai superare, neanche per errore un determinato valore. I valori di riferimento sono impostati nei campi Valore minimo / Valore massimo.

3.3.6.4 Stato uscita in sicurezza

Questa funzione consente di definire singolarmente il valore del segnale analogico di uscita nel caso di comunicazione interrotta con il Controller. Il valore del segnale in uscita è impostato nel campo Valore uscita in fault mode.

3.3.6.5 Fondo scala utente

Consente di impostare la scala dei valori numerici inviati dal Controller per ottenere il segnale in uscita. Per esempio impostando un valore = 10000 con un segnale 0/10VDC, il valore numerico impostato nel Controller equivale a mV.

3.3.7 Modulo 4 input analogici M8 per la misura di Temperature
Ogni modulo 5 per la misura di temperature può gestire fino a 4 ingressi, liberamente configurabili per l'utilizzo di sensori di temperatura o di termocoppie di vario tipo. Dispongono di alcuni parametri configurabili singolarmente.

La compensazione della temperatura (Cold Junction Compensation CJC) per l'utilizzo delle termocoppie è effettuata internamente, in condizioni di temperatura ambiente normali non è necessario installare un giunto freddo esterno. L'installazione di un sensore esterno è consigliata in caso di repentine variazioni della temperatura ambiente. Utilizzare un sensore PT1000 come per esempio il sensore TE Connectivity NB-PTCO-157 o equivalente. Il modulo per la misura di temperatura trasmette al sistema di controllo i valori misurati, con una word di ingresso per ogni canale. Per un totale di 4 word, per modulo.

Tipo di sensori supportati Pt 100, Pt 200, Pt 500, Pt 1000 Ni 100, Ni 120, Ni 500, Ni 1000

Tipo di connessione a 2, 3, 4 fili

Tipo di termocoppie supportate

J, E, T, K, N, S, B, R

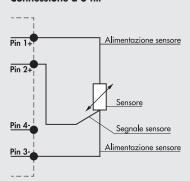
3.3.7.1 Connessioni elettriche dei sensori di temperatura (serie Pt e Ni)

Pin 1 = + Alimentazione Sensore

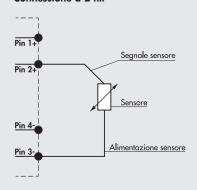
Pin 2 = + Segnale in ingresso, positivo

Pin 3 = - Alimentazione Sensore

Pin 4 = - Segnale di ingresso, negativo


Ghiera = Messa a terra funzionale

Ogni ingresso mette a disposizione due Pin per l'alimentazione costante del sensore e due pin per la misura del segnale. È possibile realizzare collegamenti a 2, 3, 4 fili a seconda della precisione desiderata. La massima precisione si ottiene con il collegamento a 4 fili.


Connessione a 4 fili

Alimentazione sensore Pin 1-Segnale sensore Pin 2-Pin 4 Segnale sensore Alimentazione sensore Pin 3-

Connessione a 3 fili

Connessione a 2 fili

In generale per la trasmissione dei segnali analogici è consentito esclusivamente l'utilizzo di cavi schermati.

3.3.7.2 Connessioni elettriche delle termocoppie

Pin 1 = CJC Compensazione del giunto freddo tramite sensore esterno Pt1000 (opzionale) Pin 2 = TC+ Segnale di ingresso dal sensore Pin 3 = CJC Compensazione del giunto freddo tramite sensore esterno Pt1000 (opzionale) Pin 4 = TC- Segnale di ingresso dal sensore

Ghiera= Messa a terra funzionale

Collegamento standard – giunto freddo interno

Collegamento con giunto freddo esterno - Opzionale

3.3.7.3 Parametri dell'unità Parametri comuni

Unità di misura: è possibile selezionare la temperatura letta in °Celsius oppure in °Fahrenheit

Soppressione del rumore: consente di sopprimere il rumore elettrico generato dalla rete di alimentazione. Lavora in combinazione con il parametro "Filtro di acquisizione".

50 Hz: sopprime i disturbi generati da una rete elettrica a 50 Hz

60 Hz: sopprime i disturbi generati da una rete elettrica a 60 Hz
50/60 Hz slow: sopprime i disturbi generati da una rete elettrica a 50 e 60 Hz. Si ottiene un filtraggio alto, ma con un ritardo nell'acquisizione del dato.

50/60 Hz fast: sopprime i disturbi generati da una rete elettrica a 50 e 60 Hz. Si ottiene un'acquisizione del dato rapida ma un filtraggio

Communicate del ministra	Syr	nc 3	Sync 4		
Soppressione del rumore	Attenuazione (dB)	Ritardo Acquisizione dato (ms)	Attenuazione (dB)	Ritardo Acquisizione dato (ms)	
50 Hz	95	60	120	80	
60 Hz	95	50	120	67	
50/60 Hz Slow	100	300	120	400	
50/60 Hz Fast	67	60	82	80	

Input Canale

Input Canale
Tipo di sensore e relativo coefficiente termico: è possibile selezionare il tipo di sensore utilizzato, tra quelli supportati.
Tipo di collegamento (solo per RTD): è possibile selezionare il tipo di collegamento del sensore, se a 2, 3 o 4 fili.
Compensazione giunto freddo (solo per TC): consente di selezionare l'utilizzo di un giunto freddo esterno al posto di quello già montato internamente. Il giunto freddo esterno (Pt1000) è consigliato in caso di repentine variazioni della temperatura ambiente.
Risoluzione della misura: consente di impostare la risoluzione della misura in decimi o in centesimi di °C. La risoluzione in centesimi è solo per i sensori RTD e consente la lettura di una temperatura massima di +/- 327 °C.
Segnalazione sensore disconnesso: se abilitato, la rottura di un filo di collegamento genera un allarme.
Segnalazione corto circuito (solo per RTD): se abilitato, un corto circuito del collegamento del sensore genera un allarme.
Monitor Valore minimo / Monitor valore massimo: l'abilitazione di queste due funzioni consente di generare un allarme nel caso la temperatura sia inferiore al valore impostato in Valore minimo o superiore al valore impostato in Valore massimo.

temperatura sia inferiore al valore impostato in Valore minimo o superiore al valore impostato in Valore Massimo.

Filtro Valore Misurato: è un filtro matematico che consente di ottenere una lettura della temperatura più stabile. Impostando un valore di filtro sul campionamento del segnale più alto si ottiene una maggiore stabilità di lettura ma un ritardo maggiore nella visualizzazione del dato.

Filtro di Acquisizione: definisce il tipo di filtro digitale. Lavora in combinazione con il parametro "Soppressione del rumore".

Impostando Sync 4 si ottiene un filtraggio più alto rispetto a Sync 3, ma con un ritardo maggiore nell'acquisizione del dato.

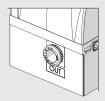
4. REGOLATORE PROPORZIONALE DI PRESSIONE

4.1 IMPIEGO AMMESSO

Il regolatore di pressione EB 80, può essere integrato in sistemi EB 80 Profinet IO e offre funzioni di diagnostica avanzata. Il sistema consente di collegare fino a 16 unità, possono essere collegati al modulo ADD ed essere utilizzati anche senza valvole.

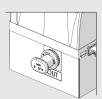
4.2 CARATTERISTICHE

- Connessione elettrica: sistema EB 80 Profinet IO.
- Pressione regolata 0.05-10 bar con possibilità di regolare il fondo scala e la minima pressione.
- Banda morta regolabile 10-300 mbar.
- Pressione di alimentazione FS+ almeno 1 bar, 10 bar max (nel caso sia necessaria una pressione regolata di 10 bar, è ammessa una pressione di alimentazione di 10.5 bar).
- Alimentazione elettrica 12÷24 VDC.
- Protezione IP65.
- Led di segnalazione pressione raggiunta.
- Display grafico e tastiera, per la visualizzazione della pressione con unità di misura e impostazione parametri.


4.3 COLLEGAMENTO PNEUMATICO

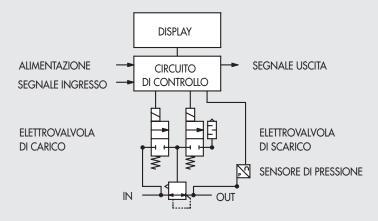
Il collegamento pneumatico avviene tramite il modulo di "Alimentazione pneumatica-P". Si raccomanda di alimentare il regolatore con una pressione non superiore a 10 bar (10.5 bar nel caso sia necessaria una pressione regolata di 10 bar) e che l'aria compressa sia filtrata a 10 µm ed essicata, per evitare che impurità o eccessiva condensa possano causare malfunzionamenti. La pressione di alimentazione deve sempre essere superiore alla pressione regolata.

Alimentare il regolatore con una pressione superiore di almeno 1 bar alla pressione di Fondo Scala impostata.


Sono disponibili 2 versioni:

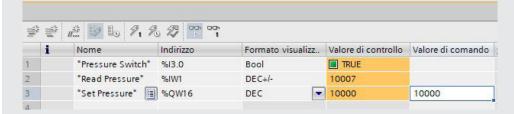
Uscita Locale, le bocche della base sono passanti, la pressione regolata disponibile sulla bocca di uscita della base del Regolatore di pressione. Le basi successive mantengono la pressione di alimentazione.

Regolazione in serie, la pressione delle basi successive é regolata dal Regolatore di pressione, la stessa pressione é anche disponibile sulla bocca di uscita.


Applicando un silenziatore sulla bocca di scarico è possibile che le portate ed i tempi di risposta cambino. Verificare periodicamente l'intasamento del silenziatore ed eventualmente sostituirlo.

4.4 PRINCIPIO DI FUNZIONAMENTO
Il circuito di controllo attraverso un algoritmo software, confronta il segnale di ingresso con la pressione in uscita rilevata dal sensore di pressione. Quando avvengono delle variazioni, interviene attivando le elettrovalvole di carico e scarico ristabilendo l'equilibrio. In questo modo si ottiene una pressione di uscita proporzionale al segnale di ingresso.

N.B.: togliendo l'alimentazione elettrica la pressione di valle non viene scaricata.


4.4.1 Schema funzionale

4.5 MESSA IN SERVIZIO

- 4.5.1 Occupazione degli indirizzi
 Il regolatore di pressione EB 80 mette a disposizione:
 2 byte di uscita per il comando della pressione;
 2 byte di ingresso per la lettura della pressione regolata;
 1 byte per la funzione pressostato (bit 0).

I valori di pressione sono espressi in mbar, il set di pressione è impostabile da 0 a 10000 mbar.

4.6 IMPOSTAZIONI

NB: le modifiche dei parametri possono essere eseguite sia tramite il Controller Profinet IO che da tastiera. Le impostazioni da tastiera sono temporanee, alla riaccensione del sistema, vengono ripristinate le impostazioni del Controller.

Impostazioni da tastiera

Per accedere al menù impostazioni nella versione con display, premere contemporaneamente i tasti OK ed ESC. Selezionare il parametro utilizzando i tasti freccia.

Premere il tasto ESC per tornare alla pagina precedente.

Durante la fase d'impostazione la regolazione della pressione NON è attiva.

4.6.1 DISPLAY

Lingua

Italiano

Inglese

Tedesco

Spagnolo

Francese

Unità di misura

bar

psi MPa

N.B.: Le impostazioni di pressione, set pressione, banda morta, fondo scala e minima pressione, se impostate dal Controller sono sempre definite in mbar.

Contrasto - La funzione è disponibile solo da tastiera

- Regolazione manuale del contrasto del display.
- Selezionare CONTRASTO utilizzando i tasti freccia, premere OK.
- Selezionare il valore utilizzando i tasti freccia, premere OK.
- La compensazione in funzione della temperatura è automatica.

Orientamento

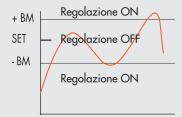
Consente di ruotare il display di 180°

- Selezionare ORIENTAM.
- Premere OK per ruotare il diplsay

4.6.2 SET UP

Ingresso

BUS

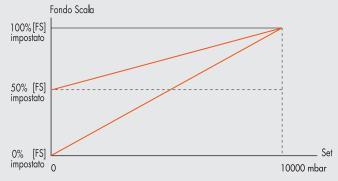

Tastiera

 Per il tipo di ingresso Tastiera, impostare la pressione utilizzando i tasti freccia. Premendo i tasti sul display viene visualizzata la pressione impostata, rilasciando i tasti si torna alla lettura della pressione regolata.

Banda morta

Indica la banda di pressione in prossimità della pressione impostata entro la quale la regolazione è inattiva. La banda morta è + e - il valore

Si consiglia di impostare valori piccoli, 10, 15 mbar, solo se è necessaria un'elevata precisione di regolazione. Un'elevata precisione di regolazione comporta un maggior lavoro delle elettrovalvole.



Fondo scala

Indica la Pressione massima regolata. Il valore è espresso in mbar, il valore massimo impostabile è 10000 mbar. Per una regolazione ottimale, la pressione di alimentazione deve essere uguale a FS (Fondo Scala) + 1 bar.

Minima pressione

Indica la pressione minima regolata con set 0. Il valore impostabile deve essere minore del Fondo Scala impostato.

Il valore minimo impostabile con Set da Tastiera è il valore di Minima Pressione.

Stato uscite in sicurezza – Fail Safe Output - La funzione è disponibile solo da impostazione PLC

Questa funzione consente di definire lo stato dei Regolatori di pressione nel caso di comunicazione interrotta con il Master.

Sono possibili tre diverse modalità da impostare in Configurazione dei Parametri dell'unità:

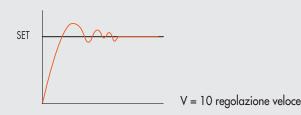
Output Reset (default), la regolazione viene disattivata e la pressione impostata a 0 (o alla pressione minima se impostata).

Hold Last State, tutti i Regolatori di pressione mantengono lo stato in cui si trovavano prima dell'interruzione della comunicazione con il Master.

Output Fault mode, è possibile selezionare il comportamento di ogni singolo Regolatore di pressione tra due modalità:

Hold Last State, il Regolatore di pressione mantiene lo stato in cui si trovava prima dell'interruzione della comunicazione con il Master. Output Fault mode, il Regolatore di pressione regola la pressione al valore impostato nel campo:

Pressione di Fail Safe in condizione di Output fault mode.



Velocità regolazione

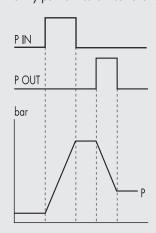
Consente di modificare la velocità di risposta del regolatore

Set punto zero (compensazione della temperatura) - La funzione è disponibile solo da tastiera

La calibrazione dello strumento viene effettuata alla temperatura ambiente di 20°C. Il valore della pressione misurata dal trasduttore interno, può variare in funzione della temperatura ambiente, può essere necessario azzerare la lettura.

Il valore letto può essere azzerato attraverso la funzione di reset.

La funzione è attiva solo se la pressione visualizzata è inferiore a 150 mbar.


Dal momento in cui viene effettuato lo Zero reset, si attiva la compensazione della temperatura e la variazione di pressione ad essa dovuta viene automaticamente compensata.

 Λ

ATTENZIONE: Il reset ha effetto sulla calibrazione dello strumento, prima di effettuarlo assicurarsi che la pressione di alimentazione sia stata rimossa e che il circuito in uscita sia scollegato.

4.6.3 DEBUG - La funzione è disponibile solo da tastiera

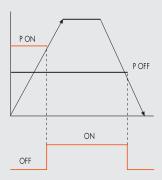
Utility per verificare il corretto funzionamento delle due elettrovalvole

- Selezionare **DEBUG**, premere OK.
- Selezionare **PIN**, premere OK l'elettrovalvola di carico si attiva, la pressione
- Premere OK, l'elettrovalvola di carico si disattiva, la pressione si stabilizza.
- Selezionare POUT, premere OK, l'elettrovalvola di scarico si attiva, la pressione diminuisce.
- Premere OK, l'elettrovalvola di scarico si disattiva, la pressione si stabilizza.

4.6.4 PASSWORD - La funzione è disponibile solo da tastiera

È un codice a tre cifre che consente di proteggere la configurazione impostata.

- Selezionare **SET PASSWORD** con i tasti freccia e premere OK. Nella pagina di impostazione, utilizzare i tasti freccia per impostare il valore e il tasto OK per confermare. Alla fine dell'impostazione compare il messaggio di conferma "**PASSWORD SALVATA**".
- Selezionare **PASSWORD**, premere OK per attivare/ disattivare la funzione. Impostata su password **ON** blocca l'accesso al menù di configurazione.

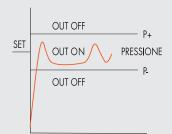

Alla pressione dei tasti OK+ESC per accedere al menù di configurazione, viene richiesta la password. Inserire la password salvata utilizzando i tasti freccia per cambiare il valore ed il tasto OK per cambiare il campo. Se impostata su password **OFF**, non è attiva.

Nel caso di smarrimento della password contattare la fabbrica, per ottenere un codice di sblocco.

4.6.5 OUTPUT DIGITALE

È disponibile un bit 0 per la funzione pressostato digitale con le relative soglie di attivazione / disattivazione, P ON (P+) e P OFF (P-) espresse in mbar.

Configurazione pressostato (P)



Impostazione da tastiera:

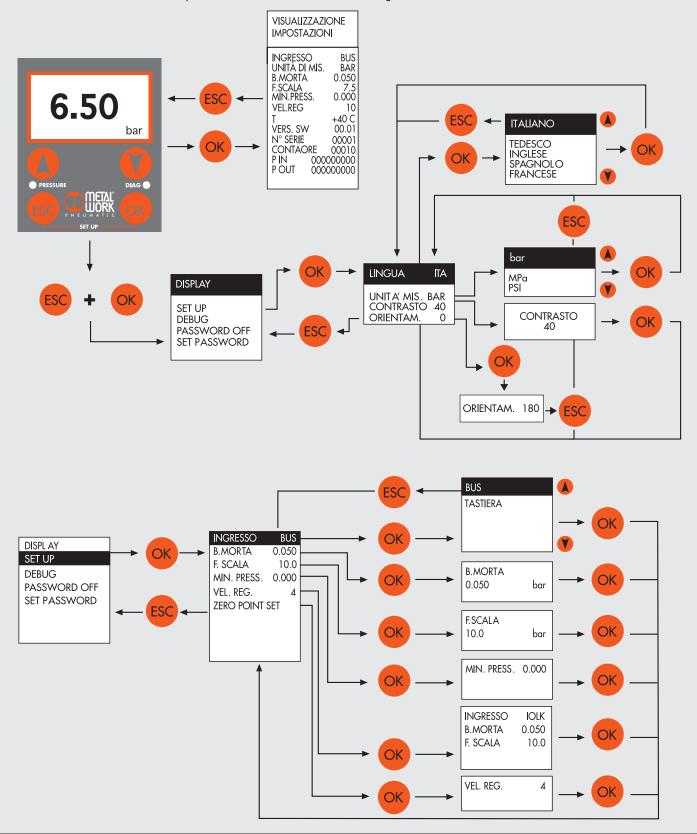
- Selezionare OUTPUT utilizzando i tasti freccia, premere OK.
- Selezionare **CONFIGUR.** per selezionare il modo di funzionamento. Premere OK.
- Selezionare **PRESSOSTATO**, premere OK. E' stata selezionata la modalità PRESSOSTATO, indicata con **CONFIGUR. P**.
- Con i tasti freccia selezionare PRESSOSTATO, premere OK.
- Selezionare PON, premere OK. Impostare la pressione di attivazione desiderata, premere OK.
- Selezionare **POFF**, premere OK. Impostare la pressione di disattivazione desiderata, premere OK.
- Premere ESC per uscire dal menù.

Riferimento set (S)

L'utilizzo di questa funzione consente una impostazione "variabile" del pressostato. L'attivazione dell'Out avviene al raggiungimento della pressione impostata, con una tolleranza definita da P+ e P-.

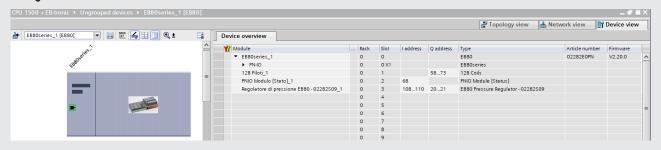
Impostazione da tastiera:

- Selezionare OUTPUT utilizzando i tasti freccia, premere OK
- Selezionare CONFIGUR. per selezionare il modo di funzionamento. Premere OK.
- Selezionare RIF.SET, premere OK. E' stata selezionata la modalità RIFERIMENTO SET, indicata con CONFIGUR. S.
- Selezionare RIF.SET, premere OK.
- Selezionare P+, premere OK.
- Impostare la tolleranza di pressione superiore, premere OK.
 Selezionare P-, premere OK.
- Impostare la tolleranza di pressione inferiore, premere OK
- Premere ESC per uscire dal menù

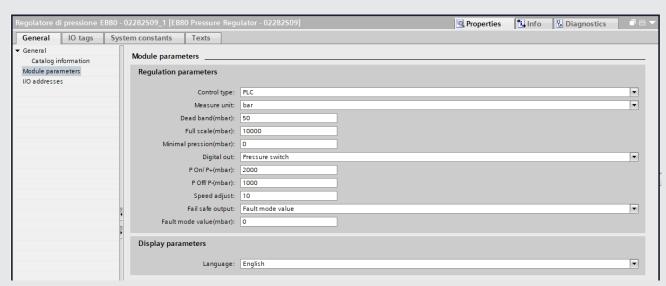


4.7 ACCESSO AL MENÙ DA TASTIERA

- Per accedere alla visualizzazione dei parametri impostati premere il tasto OK.
- Per accedere al menù di impostazione dei parametri premere contemporaneamente i tasti OK ed ESC.
- Per scorrere il menù e modificare i parametri utilizzare i tasti freccia su freccia giù.



4.8 INSTALLAZIONE IN UNA RETE Profinet


Esempio di Configurazione con TIA Portal

Il regolatore di pressione EB 80, consente di controllare la pressione, utilizzando 2 byte di uscita e 2 byte di ingresso.

Configurazione in TIA PORTAL

Configurazione dei Parametri dell'unità

5. DIAGNOSTICA

La diagnostica del sistema EB 80 Profinet IO, è definita dallo stato dei Led di interfaccia. Ogni componente del sistema segnala il suo stato, localmente tramite Led e al nodo Profinet IO tramite messaggi software.

5.1 DIAGNOSTICA DEL NODO Profinet IOLa diagnostica del nodo Profinet IO è definita dallo stato dei Led SF (Sistem Failure), BF (Bus Failure) e P1/P2.

Led	STATO	Significato
	OFF O	Nessuna connessione alla rete Profinet IO
P1 / P2 link/act	ON (verde)	Il dispositivo è connesso alla rete ma non c'è scambio di dati
	VERDE (lampeggiante)	Il dispositivo comunica correttamente con la rete
	OFF O	Nessun errore
SF	ROSSO (lampeggiante)	Inizializzazione del servizio DCP
	ON (rosso)	Errore di sistema
	OFF O	Nessun errore
D.F.	ROSSO	Nessuno scambio di dati con il Controller.
BF	(lampeggiante)	Il collegamento alla rete è interrotto o difettoso.
		Il nome del dispositivo o l'indirizzo IP è errato.
	ON (rosso)	La configurazione o la parametrizzazione del dispositivo è errata.

5.2 DIAGNOSTICA DEL SISTEMA EB 80 - CONNESSIONE ELETTRICA
La diagnostica sistema EB 80 - Connessione elettrica - è definita dallo stato dei Led Power, Bus Error e Local Error.
Le funzioni di diagnostica del sistema EB 80, restituiscono al controllore, in ordine di priorità, lo stato del sistema tramite dei codici di errore in formato esadecino o binario. Il byte di stato viene interpretato dal controllore come un byte di input. La corretta interpretazione dei codici è descritta nella tabella seguente:

Stato dei Led		Codice Hex Significato	Note	Soluzione		
Power	Bus Error	Local Error				
ON (verde)	OFF O	ON (rosso)	0×FF	Limiti di sistema superati, overflow di dati sulla linea di comunicazione.	Il numero di ingressi uscite da controllare contemporaneamente è troppo elevato o la frequenza di comando è troppo elevata.	Modificare il sistema riducendo Il numero di ingressi uscite da controllare contemporaneamente. Contattare l'assistenza tecnica
ON (verde)	OFF O	ON (rosso)	OxDC ÷ OxEB	Guasto di un modulo Regolatore di pressione	-	Contattare l'assistenza tecnica
ON (verde)	OFF O	ON (rosso)	0xD4 ÷ 0xD7	Guasto di un modulo per misura temperature	Sensore non connesso Parametri errati	Verificare la connessione e i parametri impostati
ON (verde)	OFF O	ON (rosso)	0xD0 ÷ 0xD3	Modulo input analogico non calibrato	-	Contattare l'assistenza tecnica
ON (verde)	OFF O	ON (rosso)	0xCC ÷ 0xCF	Guasto di un output analogico o corrente totale del modulo troppo elevata	Singolo output guasto / sovra-assorbimento del modulo / errori DAC	Togliere l'alimentazione elettrica e rimuovere la causa del guasto
ON (verde)	OFF O	ON (rosso)	0xC8 ÷ 0xCB	Guasto di un input analogico o corrente totale del modulo troppo elevata	under-overflow o fuori range singolo input / sovra-assorbi- mento del modulo	Togliere l'alimentazione elettrica e rimuovere la causa del guasto
ON (verde)	OFF O	ON (rosso)	0xB0 ÷ 0xC5	Guasto di un output digitale o corrente totale del modulo troppo elevata	Corto circuito di un singolo output / sovra-assorbimento del modulo	Togliere l'alimentazione elettrica e rimuovere la causa del guasto
ON (verde)	OFF O	OFF O	0xA0 ÷ 0xAF	Sovracorrente di un input digitale	Segnalato dal singolo input	Togliere l'alimentazione elettrica e rimuovere la causa del guasto
ON (verde)	OFF O	ON (rosso)	0x20 ÷ 0x9F	Valvola 1 / 128 guasta **	Elettropilota in cortocircuito, interrotto o non collegato	Togliere l'alimentazione elettrica e rimuovere la causa del guasto
VERDE (lampeggiante)	OFF O	OFF O	0x17	Mancanza alimentazione ausiliaria	-	Inserire l'alimentazione ausiliaria

	Stato dei Led	l	Codice Hex	Significato	Note	Soluzione
Power	Bus Error	Local Error				
ON (verde)	ROSSO (doppio lampeggio)	OFF O	0x16	Errore indirizzo / configurazione di una base per valvole o di un modulo segnale	Base valvole o modulo segnale difettoso	Togliere l'alimentazione elettrica e rimuovere la causa del guasto
VERDE (lampeggiante)	OFF O	ON (rosso)	0x15	Alimentazione fuori range (Under/over-Voltage)	-	Alimentare il sistema con una tensione compresa nel range di funzionamento ammesso
ON (verde)	ROSSO (singolo lampeggio)	OFF O	0x14	Errore nei parametri di configurazione di una base per valvole o di un modulo segnale	La configurazione attuale non corrisponde a quella memorizzata nel dispositivo.	Ripetere la procedura di configurazione. Se l'errore persiste sostituire il componente difettoso.
ON (verde)	ON (rosso)	OFF O	0x10	Comunicazione interna EB 80 Net difettosa	Isola addizionale configurata ma non collegata. Connessione tra le basi valvola difettosa o non terminata (il terminale cieco C montato non è del tipo per bus di campo).	Verificare la corretta connessione di tutto il sistema. Verificare che il terminale cieco sia del tipo per bus di campo. Ripristinando la comunicazione, l'allarme si resetta automaticamente dopo 3 sec.
ON (verde)	ROSSO (lampeggiante)	OFF O	0x0F	Comunicazione interna EB 80 Net disturbata	La comunicazione è difettosa a causa di disturbi elettromagnetici	Allontanare i cavi di potenza dai cavi di segnale. Verificare i livelli di disturbo cor EB 80 Manager
ON (verde)	OFF O	ROSSO (singolo lampeggio)	0x09	Errore nei parametri di configurazione della testa	Almeno un valore errato o fuori range	-
VERDE (lampeggiante)	OFF O	ROSSO (lampeggiante)	0x08	Numero di piloti collegati alla rete maggiore di 128	-	Ripristinare una configurazione delle basi per valvole corretta togliendo quelle in eccesso.
ON (verde)	OFF O	ROSSO (doppio lampeggio)	0x07	Errore di mappatura Numero di Basi per valvole collegate diverso da quello impostato o superiore al numero max ammesso;	La configurazione attuale non corrisponde a quella memorizzata nel dispositivo.	Togliere l'alimentazione elettrica. Ripristinare la configurazione corretta o ripetere la procedura di configurazione. Togliere l'alimentazione elettrica, montare la piastra di chiusura con l'apposita scheda di terminazione o
				Piastra di chiusura lato moduli S non connessa.	La rete EB 80 Net non è correttamente terminata	inserire il connettore di terminazione.
ON (verde)	OFF O	ROSSO (singolo lampeggio)	0x06	Errore di indirizzamento: • tipo di modulo non ammesso; • nessuna Base per valvole o modulo segnali collegato.	-	Collegare delle basi per valvole o dei moduli segnale di tipo ammesso.
VERDE (lampeggiante)	OFF O	ROSSO (lampeggiante)	0x05	Numero di input digitali collegati alla rete maggiore di 128	-	Disconnettere i moduli in eccesso
ON (verde)	OFF O	ROSSO	0x04	Numero di output digitali collegati alla rete maggiore di 128	-	Disconnettere i moduli in eccesso
ON (verde)	OFF O	ROSSO	0x03	Numero di input analogici collegati alla rete maggiore di 16	-	Disconnettere i moduli in eccesso
ON (verde)	OFF O	ROSSO	0x02	Numero di output analogici collegati alla rete maggiore di 16	-	Disconnettere i moduli in eccesso
ON (verde)	OFF O	OFF O	0x00	Il sistema funziona correttamente	-	-

^{**} Per individuare la posizione della valvola guasta procedere come segue: Codice errore HEX – 0x20 = n

5.3 DIAGNOSTICA DEL SISTEMA EB 80 – BASE VALVOLE
La diagnostica delle basi per valvole è definita dallo stato dei Led di interfaccia.
La generazione di un allarme attiva un messaggio software per la Connessione Elettrica con il codice relativo all'errore rilevato.

Led VERDE BASE	Significato	Stato dell'Out Segnalazione GUASTO e memorizzazione
OFF O	L'uscita non è comandata.	Out Segnalazione GUASTO - OFF
ON O	L'uscita è attiva e funziona correttamente.	Out Segnalazione GUASTO - OFF
(doppio lampeggio)	Segnalazione per ogni singola uscita. Elettropilota interrotto o mancante (falsa valvola o valvola con un elettropilota installata su una base per due elettropilota).	Out Segnalazione GUASTO – Attiva L'uscita è Auto-ripristinante se la causa del guasto viene rimossa. La segnalazione GUASTO è resettabile solo togliendo l'alimentazione elettrica.
(lampeggiante)	Segnalazione per ogni singola uscita Elettropilota o uscita della base in cortocircuito.	Out Segnalazione GUASTO – Attiva permanente L'uscita viene spenta. Resettabile solo togliendo l'alimentazione elettrica.
(lampeggiante + lampeggio contemporaneo di tutti i Led della base)	Tensione di alimentazione fuori range Minore di 10.8VDC o maggiore di 31.2VDC Attenzione: una tensione maggiore di 32VDC danneggia irreparabilmente il sistema.	Out Segnalazione GUASTO - Attiva Auto-ripristinante rientrando nel range di funzionamento. Le segnalazioni permangono 5 secondi dopo il rientro nel range di funzionamento.

5.4 DIAGNOSTICA DEL SISTEMA EB 80 – MODULI SEGNALI - S
La diagnostica dei Moduli di segnali - S è definita dallo stato dei Led di interfaccia.
La generazione di un allarme attiva un messaggio software per la Connessione Elettrica con il codice relativo all'errore rilevato.

5.4.1 Diagnostica dei Moduli segnali - S – Input Digitali – Modulo 16 I/O Digitali configurabili

Led X1X16	Significato	Soluzione
OFF O	L'ingresso non è attivo	-
ON (verde)	L'ingresso è attivo	-
ON (rosso)	Segnalazione per ogni singolo ingresso. Ingresso in cortocircuito o sovraccarico.	Rimuovere la causa del guasto
ROSSO (lampeggiante + lampeggio contemporaneo di tutti i Led)	Assorbimento complessivo di corrente troppo elevato.	Rimuovere la causa del guasto

5.4.2 Diagnostica dei Moduli segnali - S – Output Digitali – Modulo 16 I/O Digitali configurabili

Led X1X16	Significato	Soluzione
OFF O	L'uscita non è attiva	-
ON (verde)	L'uscita è attiva e funziona correttamente	-
ON (rosso)	Segnalazione per ogni singola uscita. Uscita in cortocircuito o sovraccarico.	Rimuovere la causa del guasto
ROSSO (lampeggiante + lampeggio contemporaneo di tutti i Led)	Assorbimento complessivo di corrente troppo elevato.	Rimuovere la causa del guasto

5.4.3 Diagnostica dei Moduli segnali - S – Input Analogici

Led X1X4	Significato	Soluzione
OFF O	L'ingresso non è attivo	-
ON (verde)	L'ingresso è attivo e funziona correttamente	-
VERDE (lampeggiante)	Segnale analogico fuori dal range ammesso	Impostare correttamente il tipo di ingresso Sostituire il sensore con uno di tipo ammesso
ON (rosso)	Valore del segnale analogico troppo alto/basso	Impostare correttamente il tipo di ingresso Sostituire il sensore con uno di tipo ammesso
VERDE (lampeggio contemporaneo di tutti i Led della base)	Segnalazione di cortocircuito o sovraccarico.	Rimuovere la causa del guasto

5.4.4 Diagnostica dei Moduli segnali - S - Output Analogici

Led X1X4	Significato	Soluzione
OFF O	L'uscita non è attiva	-
ON (verde)	L'uscita è attiva e funziona correttamente	-
(Lampeggio contemporaneo di tutti i Led T ON 0.2 sec T OFF 1 sec)	Valore della tensione di alimentazione fuori dal range ammesso	Alimentare correttamente il modulo
VERDE (Lampeggio contemporaneo di tutti i Led T ON 0.2 sec T OFF 0.2 sec)	Segnalazione di cortocircuito o sovraccarico sull'alimentazione.	Rimuovere la causa del guasto
ON (rosso)	Tutti i led attivi contemporaneamente. Guasto interno	Sostituire il modulo
VERDE (Lampeggio T ON 0.6 sec T OFF 0.6 sec)	Uscita in sovraccarico o in corto circuito	Rimuovere la causa del guasto. Togliere l'alimentazione elettrica per resettare la segnalazione di guasto.
ROSSO (Lampeggio contemporaneo di tutti i Led T ON 0.2 sec T OFF 0.2 sec)	Sovratemperatura del modulo	Rimuovere la causa del guasto.
VERDE (Doppio Lampeggio T ON 0.6 sec T OFF 1 sec)	Segnalazione circuito aperto. (Per canali 4/20 mA o 1/5 VDC)	Rimuovere la causa del guasto.
ROSSO (Lampeggio T ON 0.6 sec T OFF 0.6 sec)	Valore impostato non ammesso	Rimuovere la causa del guasto. Togliere l'alimentazione elettrica per resettare la segnalazione di guasto.

5.4.5 Diagnostica dei Moduli segnali - S – Ingressi Analogici per misura di temperature

Led X1X4	Significato	Soluzione
OFF O	L'ingresso non è attivo	
ON (verde)	L'ingresso è attivo e funziona correttamente	-
VERDE ROSSO (Lampeggio contemporaneo di tutti i Led T ON 0.2 sec T OFF 1 sec)	Valore della tensione di alimentazione fuori dal range ammesso	Alimentare correttamente il modulo
VERDE	Valore inferiore a quanto impostato In: Valore Minimo	Impostare correttamente i valori
(Lampeggio T ON 0.2 sec T OFF 0.2 sec)	Valore superiore a quanto impostato In: Valore Massimo	
ON (rosso)	Il sensore collegato è in corto circuito	Rimuovere la causa del guasto.
VERDE ROSSO (Lampeggio contemporaneo di tutti i Led T ON 0.5 sec T OFF 0.5 sec)	Errore interno	Rimuovere la causa del guasto. Se l'errore persiste sostituire il modulo
ROSSO (Lampeggio T ON 0.2 sec T OFF 0.2 sec)	Segnalazione circuito aperto	Rimuovere la causa del guasto
ROSSO (Lampeggio T ON 0.6 sec T OFF 0.6 sec)	Sensore fuori range	Rimuovere la causa del guasto

5.5 DIAGNOSTICA DEL SISTEMA EB 80 – CONNESSIONE ELETTRICA ADDIZIONALE

La diagnostica della connessione elettrica Addizionale è definita dallo stato dei Led di interfaccia. La generazione di un allarme attiva un messaggio software per la Connessione Elettrica con il codice relativo all'errore rilevato.

POWER	BUS ERROR	Significato	Soluzione
ON (verde)	OFF O	L'isola addizionale funziona correttamente	-
ON (verde)	ON (rosso)	Guasto. Per la corretta identificazione fare riferimento al codice di errore o alla diagnostica locale.	Togliere l'alimentazione elettrica e rimuovere la causa del guasto

5.6 DIAGNOSTICA DEL REGOLATORE PROPORZIONALE DI PRESSIONE La diagnostica è definita dallo stato dei Led e dal byte di stato.

5.6.1 Led di interfaccia

	LED PRESSURE	SIGNIFICATO
X	lampeggiante	In regolazione
•	ON	Regolazione OFF
0	OFF	Manca la tensione di alimentazione
	LED DIAG	SIGNIFICATO
•	ON	Uscita pressostato attiva
0	OFF	Uscita pressostato NON attiva

5.6.2 Guida alla ricerca dei guasti

PROBLEMA	POSSIBILE CAUSA	SOLUZIONE
Il display non si accende	Manca la tensione di alimentazione	Accertarsi della presenza della tensione, che sia
		sufficiente e che il cablaggio sie eseguito
		secondo lo schema di collegamento
L'unità non risponde o risponde in modo errato al setpoint	Impostazione del segnale di ingresso errata	Configurare il tipo di ingresso appropriato nel menù
impostato		
L'unità non raggiunge la pressione desiderata	Setpoint troppo basso	Fornire un setpoint adeguato
	L'impostazione del Fondo Scala è impostato su	Impostare correttamente il Fondo Scala
	una pressione inferiore a quella desiderata	
	La pressione di alimentazione è troppo bassa	Aumentare la pressione di alimentazione
Il display mostra un valore irreale	Impostazione errata dell'Unità di misura	Verificare l'impostazione dell'Unità di misura
Il display è poco leggibile	Impostazione del contrasto errata	Regolare correttamente il contrasto
L'unità regola di continuo	Perdita d'aria nel circuito dopo l'unità	Eliminare la perdita
	Variazione continua del volume collegato	Comportamento normale, l'unità deve
		regolare per mantenere la pressione impostata
	"Banda morta" troppo piccola	Aumentare la Banda morta
Eventuali altri problemi	Consultare la fabbrica	

5.6.3 Descrizione allarmi

ALLARME	POSSIBILE CAUSA	SOLUZIONE
Allarme tensione di alimentazione troppo alta	La tensione di alimentazione è superiore a 30VDC	Alimentare l'unità con una tensione corretta.
Allarme tensione di alimentazione troppo bassa	La tensione di alimentazione è inferiore a 12VDC	
Allarme P. INP CORTOC. 0VDC	Elettrovalvola di carico in cortocircuito	
Allarme P. OUT CORTOC. 0VDC	Elettrovalvola di scarico in cortocircuito	Spegnere e riaccendere l'unità.
Allarme P. INP SCOLLEGATO	Elettrovalvola di carico scollegata	Se l'allarme persiste consultare la fabbrica.
Allarme P. OUT SCOLLEGATO	Elettrovalvola di scarico scollegata	·
Allarme PRESSIONE FUORI RANGE	La pressione di valle supera i 10200 mbar.	Verificare che lo scarico dell'unità non sia ostruito.
		L'allarme si resetta automaticamente quando la
		pressione scende al di sotto del valore massimo.
Allarme sensore di pressione scollegato	Disturbi elettromagnetici	Allontanare la causa e riaccendere l'unità
	Sensore guasto	Consultare la fabbrica.

6. LIMITI DI CONFIGURAZIONE

La rete EB 80 può essere configurata componendo le isole secondo le esigenze dell'impianto.
Per un funzionamento sicuro ed affidabile, è comunque necessario rispettare dei limiti, imposti dal sistema di trasmissione seriale basato sulla tecnologia CAN e utilzzare i cavi schermati, twistati e con impedenza controllata, forniti da Metal Work.

- L'insieme formato da:

 Numero di basi valvole (nodi)

 Numero di moduli segnale (nodi)

 Numero di Connessioni elettriche addizionali (nodi)

 Lunghezza dei cavi di collegamento definisce il limite del sistema.

Un numero elevato di nodi riduce la lunghezza massima dei cavi di collegamento, e viceversa.

N° di nodi	Lunghezza massima cavo
70	30 m
50	40 m
10	50 m

7. DATI TECNICI

CONNESSIONE ELETTRICA Profinet IO

DATI TECNICI		
		100 M 2/ F II I I C
Fieldbus		100 Mbit/s - Full-duplex - Supporta Fast Start Up, comunicazione RT, Shared Device, Identification & Maintenance 1-4
Impostazioni di fabbrica		Denominazione modulo: EB80series - Indirizzo IP: 0.0.0.0
Indirizzamento		Software DCP
Range di tensione di alimentazione	VDC	12 -10% 24 +30%
Tensione minima di funzionamento	VDC	10.8 *
Tensione massima di funzionamento	VDC	31.2
Tensione massima ammissibile	VDC	32 ***
Protezioni		Modulo protetto da sovraccarico e da inversione di polarità. Uscite protette da sovraccarichi e cortocircuiti.
Connessioni		Fieldbus: 2 M12 Femmina codifica D, switch interno. Alimentazione: M8, 4-PIN
Diagnostica		Profinet IO: tramite LED locali e messaggi software. Outputs: tramite LED locali e byte di stato
Assorbimento di corrente alimentazione Bus		lcc nominale 180 mA a 24 VDC
Massima corrente disponibile per i moduli	mΑ	3500
di Segnali S		
N° max di piloti		128
N° max di Ingressi digitali		128
N° max di Uscite digitali		128
N° max di Ingressi Analogici		16
N° max di Uscite Analogiche		16
N° max di Ingressi per temperature		16
Valore del bit di dato		0 = non attivo; 1= attivo
Stato delle uscite in assenza di comunicazione		Configurabile per ogni singola uscita: non attiva, mantenimento dello stato, impostazione di uno stato predefinito

^{*} La tensione minima di 10.8VDC è necessaria agli elettropiloti, per cui verificare con i calcoli di pagina 5 la tensione minima all'uscita dell'alimentatore.

MODULI DI SEGNALI - S - INPUT DIGITALI

DATI TECNICI		8 Input digitali M8	16 Input digitali Morsettiera
Tensione di alimentazione sensori		Corrispondente alla tensione di alimentazione	
Corrente per singolo connettore	mA	max	200
Corrente per singolo modulo	mA	max	500
Impedenza di ingresso	kΩ	3.	9
Tipo di ingresso		PNP/NPN configura	bile tramite software
Protezione		Ingressi protetti da sovr	accarico e cortocircuito
Connessioni		8 connettori M8 Femmina 3 poli	4 connettori 12 poli con serraggio a molla
Segnalazione Input attivi		Un LED per ogni Input	Un LED per ogni Output

NB: I moduli di segnali 16 Input digitali a Morsettiera sono disponibili dalla versione software 2.16 e file GSDML-V2.32-Metalwork-EB80-20180115

MODULI DI SEGNALI - S - OUTPUT DIGITALI

	8 Output digitali M8	16 Output digitali Morsettiera
	Corrispondente alla ten	sione di alimentazione
mA	max	500
mA	max 3	3000
	PNP/NPN configura	bile tramite software
	Ingressi protetti da sovraccarico e cortocircuito	Uscite protette da sovraccarico e cortocircuito
	8 connettori M8 Femmina 3 poli	4 connettori 12 poli con serraggio a molla
	Un LED per	ogni Output
		Corrispondente alla ten mA mA mA PNP/NPN configura Ingressi protetti da sovraccarico e cortocircuito 8 connettori M8 Femmina 3 poli

NB: I moduli di segnali 16 Output digitali a Morsettiera sono disponibili dalla versione software 2.16 e file GSDML-V2.32-Metalwork-EB80-20180115

^{***} ATTENZIONE: una tensione maggiore di 32VDC danneggia irreparabilmente il sistema.

MODULI DI SEGNALI - S - OUTPUT DIGITALI + ALIMENTAZIONE ELETTRICA

DATI TECNICI		6 Output digitali M8 + Alimentazione elettrica	
Range di tensione di alimentazione BUS	VDC	12 -10% 24 +30%	
Range di tensione di alimentazione uscite	VDC	12 -10% 24 +30%	
Tensione minima di funzionamento	VDC	10.8 *	
Tensione massima di funzionamento	VDC	31.2	
Tensione massima ammissibile	VDC	32 ***	
Tensione in uscita		Corrispondente alla tensione di alimentazione	
Corrente per singolo connettore	mA	max 1000	
Corrente per singolo modulo	mA	max 4000	
Tipo di uscita		PNP/NPN configurabile tramite software	
Protezione		Ingressi protetti da sovraccarico e cortocircuito	
Connessioni		6 connettori M8 Femmina 3 poli per Segnali	
		1 connettore M8 Maschio 4 poli per Alimentazione	
Segnalazione Output attivi		Un LED per ogni Output	

^{*} La tensione minima di 10.8VDC è necessaria agli elettropiloti, per cui verificare con i calcoli di pagina 5 la tensione minima all'uscita dell'alimentatore.
*** ATTENZIONE: una tensione maggiore di 32VDC danneggia irreparabilmente il sistema.

MODULI DI SEGNALI - S - 16 INPUT / OUTPUT DIGITALI CONFIGURABILI

DATI TECNICI		8 connettori M8	8 connettori M12
Tensione di alimentazione		Corrispondente alla tensione di alimentazione	
Corrente per singolo connettore	mA	max	1000
Corrente per singolo modulo	mA	max 3	3000
Corrente per singola uscita	mA	max	500
Tipo di uscita		PN	NP.
Impedenza di ingresso	kΩ	3.	9
Tipo di ingresso		PN	NP.
Protezione		Ingressi e uscite protetti da	sovraccarico cortocircuito
Connessioni		8 connettori M8 Femmina 4 poli	8 connettori M12 Femmina 5 poli
Segnalazione Input attivi		Un LED per ogni Input	
Segnalazione Output attivi		Un LED per ogni Output	
Configurazione di fabbrica		Porte X1X8 Ingressi Digitali	
		Porte X9X16	Uscite Digitali
Configurazione Encoder			
Tipo di ingresso		PN	NP
Tensione per ingresso attivo		>1	2
Tensione per ingresso non attivo		<1	2
Frequenza massima		300	
Formato valore		32 bit (DWORD)	
Conteggio max		4.294.967.295	

NB: I moduli di segnali 16 Input Output digitali configurabili sono disponibili dalla versione software 4.00 e file GSDML-V2.33-Metalwork-EB80-20240201

MODULI DI SEGNALI - S - INPUT ANALOGICI

DATI TECNICI		4 Input Analogici M8
Tensione di alimentazione sensori		Corrispondente alla tensione di alimentazione
Corrente per singolo connettore	mA	max 200
Corrente per singolo modulo	mA	max 650
Tipo di ingresso, configurabile da software		0/10 V; 0/5 V; +/-10 V; +/-5 V; 4/20 mA; 0/20 mA
Protezione		Ingressi protetti da sovraccarico e cortocircuito
Connessioni		4 connettori M8 Femmina 4 poli
Segnalazione diagnostica locale tramite LED		Sovraccarico, in corto circuito o tipo di ingresso
		non conforme con la configurazione
Risoluzione		15 bit + segno

MODULI DI SEGNALI - S - OUTPUT ANALOGICI

DATI TECNICI		4 Output Analogici M8
Tensione di alimentazione per dispositivi		Corrispondente alla tensione di alimentazione
Corrente per singolo connettore	mA	max 200
Corrente per singolo modulo	mA	max 650
Tipo di uscita		0/10 V; 0/5 V; +/-10 V; +/-5 V; 4/20 mA; 0/20 mA
Protezione		Uscite protette da sovraccarico e cortocircuito
Connessioni		4 connettori M8 Femmina 4 poli
Segnalazione diagnostica locale tramite LED		Sovraccarico, in corto circuito o tipo di collegamento
		non conforme con la configurazione
Risoluzione		15 bit + segno

MODULI DI SEGNALI - S - INPUT ANALOGICI PER LA MISURA DI TEMPERATURE

DATI TECNICI		4 Input analogici M8 per la misura di temperature
Tensione di alimentazione sensori		Corrispondente alla tensione di alimentazione
Tensione massima di ingresso	VDC	30
Tipo di sensore (RTD)		
al platino (-200 ÷ +850°C)		Pt100, Pt200, Pt500, Pt1000 (TK = 0.00385 e TK = 0.00391)
al nichel (-60 ÷ +180°C)		Ni100, Ni120, Ni500, Ni1000 (TK= 0.00618)
Tipo di connessioni (RTD)		2, 3, 4 fili
Tipo di termocoppia (TC)		J, E, T, K, N, S, B, R
Compensazione giunto freddo per termocoppie		, , , , , ,
Interna		Con sensore elettronico interno
Esterna		È necessario un sensore PT1000 connesso al connettore M8 della termocoppia
Range di temperatura	°C	- 200 ÷ + 800
	°F	- 328 ÷ + 1472
Risoluzione		15 bit + segno
Errore max rispetto alla temperatura ambiente		±0.5% (TC)
· · · · · ·		±0.06% (RTD)
Errore max base (T ambiente 25°C)		±0.4% (TC)
	°C	±0.6 (con RTD a 4 fili con risoluzione 0.1)
	°C	±0.2 (con RTD a 4 fili con risoluzione 0.01)
Ripetibilità (T ambiente 25°C)		±0.03%
Occupazione indirizzi		2 byte per ogni ingresso – 8 byte per modulo
Tempo di ciclo (modulo)	ms	240
Linearizzazione software		
per RTD		Approssimazione lineare a tratti
per TC		Linearizzazione NIST (National Institute of Standards and Technology) basata sulla
•		scala ITS-90 (International Temperature Scale of 1990) per la linearizzazione delle termocoppie
Lunghezza massima del cavo schermato	m	< 30
per il collegamento		
Diagnostica		Un LED per ogni input e segnalazione al Master

NB: Sono disponibili dalla versione software 2.16 e file GSDML-V2.32-Metalwork-EB80-20180115

REGOLATORE PROPORZIONALE DI PRESSIONE

DATI TECNICI		Versione uscita locale Versione regolazione in serie			azione in serie
Fluido		Aria filtrata senza lubrificazione. L'aria deve essere preventivamente filtrata con grado filtrazione almeno 10 µm			
Pressione MIN di alimentazione	bar	Pressione regolata + 0.5 ÷ 1			
Pressione MAX di alimentazione	bar		10).5	
Temperatura di esercizio	°C		0 ÷		
Campo di regolazione della pressione	bar		0.05 ÷ 10 (minima pression	ne e fondo scala impostabili)	
Portata a 6.3 bar Δ P 0.5	NI/min	7:	20	8.5	50
Portata a 6.3 bar ΔP 1	NI/min	10	000	12	250
Portata in scarico a 6.3 bar con	NI/min	3	80	43	50
sovrapressione di 0.1 bar					
Portata in scarico a 6.3 bar con	NI/min	80	00	11	00
sovrapressione di 0.5 bar					
Tempi di risposta	Volume [cc]	100	1000	100	1000
da 6 a 7 bar	s	0.1	0.15	0.1	0.15
da 7 a 6 bar	s	0.1	0.15	0.1	0.15
Peso	kg	0.6			
Grado di protezione		IP 65			
Isteresi		≤ ± 0.2% (Fondo scala)			
Ripetibilità		≤ ± 0.2% (Fondo scala)			
Sensibilità/Banda morta		Impostabile 10 ÷ 300 mbar			
Visualizzazione pressione di uscita	Precisione	≤ ± 0.3% (Fondo scala)			
(versione con display)					
	Unità di misura				
	Risoluzione min				
Caratteristiche di temperatura		Max 2 mbar / °C			
Posizione di montaggio		In qualsiasi posizione			
Assorbimento di corrente		Max 220 mA a 12VDC			
Note		Le caratteristiche indica	ate si limitano alla condizione di	staticità; con consumo d'aria la p	pressione può oscillare.

NOTE		

Image: Control of the control of the

INDEX

INTENDED USE	PAGE 40
TARGET GROUP	PAGE 40
1. INSTALLATION	PAGE 40
1.1 GENERAL INSTRUCTIONS FOR INSTALLATION	PAGE 40
1.2 ELECTRICAL CONNECTION AND DISPLAY ELEMENTS	PAGE 40
1.3 ELECTRICAL CONNECTIONS: PIN ASSIGNMENT OF CONNECTOR	PAGE 40
1.4 POWER SUPPLY	PAGE 41
1.5 MAINS CONNECTION	PAGE 42
2. COMMISSIONING	PAGE 43
2.1 CONNECTIONS TO THE EB 80 Profinet IO SYSTEM	PAGE 43
2.2 INSTALLATION OF THE EB 80 SYSTEM IN A Profinet IO NETWORK	PAGE 43
2.3 EB 80 SYSTEM CONFIGURATION	PAGE 43
2.4 ADDRESSING	PAGE 44
2.5 CONFIGURING THE EB 80 SYSTEM IN Profinet IO NETWORK	PAGE 44
3. ACCESSORIES	PAGE 46
3.1 INTERMEDIATE MODULE - M, WITH ADDITIONAL POWER SUPPLY	PAGE 46
3.2 ADDITIONAL ELECTRICAL CONNECTION - E0AD	PAGE 46
3.3 SIGNAL MODULES - S	PAGE 47
4. PROPORTIONAL PRESSURE REGULATOR	PAGE 55
4.1 INTENDED USE	PAGE 55
4.2 FEATURES	PAGE 55
4.3 PNEUMATIC CONNECTION	PAGE 55
4.4 OPERATING PRINCIPLE	PAGE 56
4.5 COMMISSIONING	PAGE 56
4.6 SETTING	PAGE 57
4.7 ACCESS TO THE MENU FROM THE KEYBOARD	PAGE 61
4.8 INSTALLATION SYSTEM TO AN Profinet NETWORK	PAGE 62
5. DIAGNOSTICS	PAGE 63
5.1 PROFINET IO NODE DIAGNOSTIC MODE	PAGE 63
5.2 EB 80 SYSTEM DIAGNOSTIC MODE – ELECTRICAL CONNECTION	PAGE 63
	DA CE 7.5
5.3 EB 80 SYSTEM DIAGNOSTIC MODE – VALVE BASE	PAGE 65
5.3 EB 80 SYSTEM DIAGNOSTIC MODE – VALVE BASE 5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S	PAGE 65
	PAGE 65
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S	
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION	PAGE 65 PAGE 67
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR	PAGE 65 PAGE 67 PAGE 68
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69
5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S 5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION 5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATOR 6. CONFIGURATION LIMITS	PAGE 65 PAGE 67 PAGE 68 PAGE 69

INTENDED USE

The Profinet IO Electrical Connection can be used to connect the EB 80 system to a Profinet network. In compliance with current specifications, the Profinet IO offers diagnostic functions. The system is available in the configuration up to 128 outputs for solenoid pilots, 128 digital outputs, 128 digital inputs, 16 analogue outputs, 16 analogue inputs, 16 inputs for temperature measurement and 16 Proportional Pressure Regulators. The architecture supports RT communication, Fast Start Up, Shared Device and Identification & Maintenance 1-4.

WARNING

The EB 80 Profinet IO must only be used as follows:

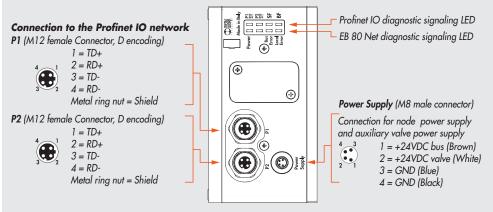
- as designated in industrial applications.;

- in systems fully assembled and in perfect working order;
 in compliance with the maximum values specified for electrical ratings, pressures and temperatures.
 Only use power supply complying with IEC 742/EN60742/VDE0551 with at least 4kV insulation resistance (PELV).

TARGET GROUP

This manual is intended exclusively for technicians qualified in control and automation technology, who have acquired experience in installing, commissioning, programming and diagnosing programmable logic controllers (PLC) and Fieldbus systems.

1. INSTALLATION


1.1 GENERAL INSTRUCTIONS FOR INSTALLATION

Before carrying out any installation or maintenance work, switch off the following:

- compressed air supply;
- the operating power supply to solenoid valve / output control electronics.

1.2 ELECTRICAL CONNECTION AND DISPLAY ELEMENTS

1.3 ELECTRICAL CONNECTIONS: PIN ASSIGNMENT OF CONNECTOR

1.3.1 M8 connector for node and output power supply

- 1 = +24VDC Connector for node Profinet IO and input/output power supply 2 = +24VDC Auxiliary valve power supply
- 3 = GND

The EB 80 must be earthed using the end plate connection marked with the symbol PE 🛓

The bus supply system also powers all the Signal modules S that are directly connected to the node; the maximum supplied current is 3.5 A.

WARNING

Failure to make the earth connection may cause faults and irrevocable damages in the event of electrostatic discharge. In order to guarantee IP65 protection class, any discharge must be conveyed and unused M12 connections must be provided with a protective cap.

1.3.2 M12 connector for connection to the Profinet IO network

1 = TD +

2 = RD +

3 = TD-4 = RD-

Metal ring nut = Shield

The network connectors are the M12 D-coded type, in accordance with Profinet IO specifications. Pre-wired Profinet IO cables can be used to prevent any malfunction due to faulty wiring or, as an alternative, recyclable Profinet IO 4-pin M12 metallic male connectors can also be used. Connection to Controller may require an RJ45-M12 male D-coded connecting cable to be provided with the following Metal Work catalogue

- 0240005050 RJ45 4-pin connector to IEC 60 603-7;
 0240005093 / 095 / 100100100 Straight M12 D-coded connector for bus with cable.

WARNING

For correct communication, only use Profinet IO cables, cat. 5 / Class D 100MHz of the type shown in the Metal Work catalogue. Incorrect installation can cause transmission errors and lead to malfunction of the devices.

The most frequent causes of data transmission faults are:

- wrong connection of shield or leads;
- cables too long or unsuitable;
- Network components unsuitable for branching.

1.4 POWER SUPPLY

An M8 4-pin female connector is used for the power supply. The auxiliary power supply of the valves is separate from that of the fieldbus, which means that the valves can be powered off while the bus line remains live. The absence of auxiliary power is indicated by the flashing of the Led Power light and simultaneous flashing of all the solenoid valve Led lights. The fault is relayed to the Controller, which provides for adequate management of the alert.

Power off the system before plugging or unplugging the connector (risk of functional damage).

Use fully assembled valve units only.

Only use power packs complying with IEC 742/EN60742/VDE0551 with at least 4kV insulation resistance (PELV).

1.4.1 Supply voltage

The system provides a wide voltage range, from 12VDC -10% to 24VDC +30% (min 10.8, max 31.2).

Voltage greater than 32VDC irrevocably damages the system.

SYSTEM VOLTAGE DROP

Voltage drop depends on the input maximum current drawn by the system and the length of the cable for connection to the system.

In a 24VDC-powered system, with cable lengths up to 20 m, voltage drops do not need to be taken into account.

In a 12VDC-powered system, there must be enough voltage to ensure correct operation. It is necessary to take into account any voltage drops due to the number of active solenoid valves, the number of valves controlled simultaneously and the cable length.

The actual voltage supplied to the solenoid pilots must be at least 10.8 VDC.

A synthesis of the verification algorithm is shown here below.

Maximum current: I max [A] = (no. of solenoid pilots controlled simultaneously x 3.2) + (no. of active solenoid valves x 0.3)

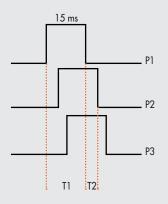
Voltage drop: with a M8 cable: $\Delta V = I \max [A] \times Rs [0.067\Omega/m] \times 2L [m]$ Where Rs is the cable resistance and L its length.

The voltage at the cable inlet, Vin must be at least 10.8 VDC + ΔV

12 VDC supply voltage, 5 m cable, 3 pilots activate while other 10 are already active:

$$I \max = (3 \times 3.2) + (10 \times 0.3) = 1.05 \text{ A}$$

$$\Delta V = (1.05 \times 0.067) \times (2 \times 5) = 0.70 \text{ VDC}$$


This means that at the power supply voltage greater than or equal to 10.8 + 0.7 = 11.5 VDC is required. $Vin = 12 \ VDC > 11.5 \rightarrow OK$

1.4.2 Input current
Solenoid valves are controlled via an electronic board equipped with a microprocessor.

In order to ensure safe operation of the valve and reduce energy consumption, a "speed-up" control is provided, i.e. 3W is supplied to solenoid pilot for 15 milliseconds and then power is gradually reduced to 0.25W. The microprocessor regulates, via a PWM control, the current in the coil, which remains constant regardless of the supply voltage and temperature, thus keeping the magnetic field generated by the solenoid pilot unchanged.

For the system power supply to be properly scaled, it is important to take into account the number of valves to be controlled simultaneously* and the number of those already active.

*By simultaneous control is meant the activation of all solenoid pilots with a time difference less than 15 milliseconds.

Total current consumption is equal to the power consumed by the solenoid pilots plus the current consumed by the electronics controlling the bases. To simplify the calculation, you can consider 3.2W consumed by each solenoid pilot simultaneously and 0.3W by each active

I max $[A] = [No. of simultaneously-controlled solenoid pilots <math>\times 3.2) + (no. of active solenoid pilots \times 0.3)$

Example:

No. of simultaneously-controlled solenoid pilots = 10 No. of active solenoid pilots = 15 VDC = Supply voltage 24

 $I \max = \frac{(10 \times 3.2) + (15 \times 0.3)}{1.5 \text{ A}} = 1.5 \text{ A}$

T1 = P1 + P2 + P3 = 3 simultaneously-controlled solenoid pilots T2 = P2 + P3= 2 simultaneously-controlled solenoid pilots

The input current of 180 mA consumed by the fieldbus electrical terminal must be added to the resulting current.

Summary table

Total power consumed during speed-up	3.2 W
Total power consumed during the holding phase	0.3 W
Power consumed by the fieldbus electrical terminal	4 W

The maximum current required to control solenoid valves and supplied by the Profinet power supply connection terminal is 4A. If the current exceeds the maximum value, an Intermediate module - M with additional power supply must be added to the system (see subsection 3.1).

1.5 MAINS CONNECTION

For installation instructions, please refer to the PNO (Profibus user organization) guidelines. http://www.profinet.com

1.5.1 Use of Switches

EB 80 Profinet IO electrical connection comes with an integrated two-port switch to be used for the installation of linear networks. The network can be divided into several segments, using additional switches.

Make sure that the devices used comply with Industrial Ethernet specifications and support all Profinet IO functions.

2. COMMISSIONING

WARNING

Power off the system before plugging or unplugging the connector (risk of functional damage).

Connect the device to the earth using a suitable lead.

Failure to make the earth connection may cause faults and irrevocable damages in the event of electrostatic discharge.

Use fully assembled valve units only.

2.1 CONNECTIONS TO THE EB 80 Profinet IO SYSTEM

Connect the device to the earth.

Connect the P1 input connector to the Profinet IO network.

Connect the P2 output connector to the next device. Otherwise close the connector with the cap provided to guarantee IP65 protection. Connect the connector to the power mains. The power supply of fieldbus supply is separate from that of the valves.

The valves can be powered off keeping the communication with Profinet IO controller active.

2.2 INSTALLATION OF THE EB 80 SYSTEM IN A Profinet IO NETWORK

2.2.1 GSDML configuration file

To configure the EB 80 system correctly in a Profinet IO network, upload the GSDML EB80series file to the programming software used. It can be downloaded from the Metal Work's website.

The GSDML configuration file explains the characteristics of the EB 80 Profinet IO system.

In order for it to be identified as a Profinet IO device and its inputs and outputs be properly configured, the file must be imported into the controller development environment.

2.2.2 Naming and IP address

Like all Ethernet components, the EB 80 Profinet IO system has a permanently-memorised univocal MAC address.

In a Profinet IO network, it is absolutely necessary to assign a univocal name to each device of the project.

All the devices are identified by that name, which is stored in a non-volatile memory and is available after powering on the system.

Factory settings: Name of the Profinet IO device: EB80series

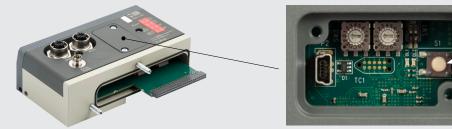
IP address: 0.0.0.0 Subnet Mask: 0.0.0.0

The name can be assigned using one of the applications available with the programming software.

The network Controller will automatically assign the IP address.

Correct communication between the Controller and the EB 80 system only occurs if the latter has been assigned the same name specified in the Controller configuration, otherwise there is no Profinet IO communication. The fault is indicated by the Profinet IO diagnostic LED lights. A fixed IP address can be assigned to the device.

2.3 EB 80 SYSTEM CONFIGURATION


Before using the EB 80 system, it is necessary to configure it through a procedure that reveals its composition. Proceed as follows:

- disconnect the M8 power connector;
- open the door of the module;
- press button "A" and reconnect the M8 power connector, by holding it down until all the indicator lights on the system, valve bases, signal modules and additional islands temporarily flash.

The EB 80 system is highly flexible and its configuration can be changed at any time by adding, removing or altering the bases for valves, signal modules or additional islands.

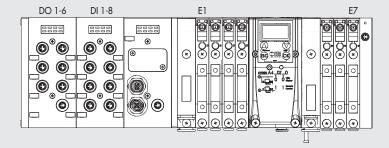
The configuration must be effected after each change made to the system.

In the case of islands with additional electrical connection or M8 modules with 6 digital outputs + power supply, for them to be properly configured, all the modules must be powered.

IMPORTANT

If the initial configuration has been changed, some solenoid valve addresses are likely to displace.

Address displacement occurs in any of the following cases:


- the addition of valve bases among existing ones,
- the replacement of a valve base with one of a different type;
- the elimination of one or more intermediate valve bases; the addition or elimination of islands with Additional Electrical Connection between pre-existing islands. The addition or elimination of additional islands at one end of the system does not entail any address displacement. The new addresses are subsequent to existing ones.
- The increase in the number of valve base bytes (pneumatic module) when digital output modules have already been configured.

The following address volume is made available to the Controller:

- 16 bytes for valve bases (pneumatic module), maximum 128 solenoid pilots;
- 16 bytes for digital output signal modules, maximum 128 digital outputs; 16 bytes for digital input signal modules, maximum 128 digital inputs;
- 32 bytes for analogue output signal modules, maximum 16 analogue outputs; 3 output bytes for 16 Digital I/O configurable Module, maximum 4 modules;
- 32 bytes for analogue input signal modules, maximum 16 analogue inputs;
- 32 bytes for analogue input signal modules for temperature measurement, maximum 16 analogue inputs;
- 2 output bytes for the set of the pressure of the Proportional Pressure Regulators, maximum 16 Proportional Pressure Regulators, 32 bytes;
- 2 input bytes for the reading of the pressure of the Proportional Pressure Regulators, maximum 16 Proportional Pressure Regulators, 32 bytes;
- 1 input bytes for the pressure switch function of the Proportional Pressure Regulators, maximum 16 Proportional Pressure Regulators, 16 bytes;

• 10 input bytes for 16 Digital I/O configurable Module, maximum 4 modules.

The EB 80 system can be configured according to actual needs, by adding 1-byte modules for digital outputs and inputs, 8-byte modules for analogue outputs and inputs in the control system configuration, 3 bytes of input and 2 of output for each Proportional Pressure Regulators. All modules are addressed sequentially.

2.5 CONFIGURING THE EB 80 SYSTEM IN Profinet IO NETWORK

Select the header module from the hardware catalogue of the development system, add it to the configuration and assign it to the IO Controller. The device is assigned an output byte and a state byte indicating the diagnostic state of the EB 80 system.

2.5.1 Configuring the maximum number of solenoid pilots

In order to avoid the occupation of unused addresses, the maximum number of solenoid pilots can be configured by selecting, in the pneumatic Module folder of the hardware catalogue, the maximum output number closer to that really installed. The choice can be made from among 16 modules, i.e. between 8 and 128 outputs. To eliminate the number of outputs, eliminate the output module and replace it with the most appropriate one. The system continues to work correctly even when a module higher than that really present has been configured.

If a module lower than the one really present is configured, the Controller generates an error and the EB 80 system does not activate the

outputs.

2.5.2 Assigning data bits to solenoid valve base outputs

bit 0	bit 1	bit 2	bit 3	 bit 127
Out 1	Out 2	Out 3	Out 4	 Out 128

2.5.3 Examples of solenoid pilot output addresses

Base for 3- or 4-control valves - Only valves with one solenoid pilot can be installed.

Valve type	Valve with 1 solenoid pilot	Valve with 1 solenoid pilot	Dummy or bypass valve	Valve with 1 solenoid pilot	Dummy or bypass valve	Valve with 1 solenoid pilot
1 solenoid pilot	14	14	-	14	-	14
Output	Out 1	Out 2	Out 3	Out 4	Out 5	Out 6

Base for 6- or 8-control valves - One or two solenoid pilots can be installed.

Valve type	Valve with 2 solenoid pilots	Valve with 1 solenoid pilot	Dummy or bypass valve	Valve with 1 solenoid pilot	Dummy or bypass valve	Valve with 2 solenoid pilots
1 solenoid pilot	14	14	-	14	-	14
2 solenoid pilot	12	-	=	-	-	12
Outroit	Out 1	Out 3	Out 5	Out 7	Out 9	Out 11
Output	Out 2	Out 4	Out 6	Out 8	Out 10	Out 12

Each base occupies all the positions.

The control of non-connected outputs generates an interrupted solenoid pilot alarm.

2.5.4 Configuring the parameters of the unit

Module parameters	
System parameters	
Fail safe output:	Outputs reset
System start with:	External/Default-Parameter
Visualization of analogue	
values:	MOTOROLA (MSB-LSB) ▼
Analog input data format:	Sign+15bit ▼

2.5.4.1 Fail safe outputs

This function can be used to determine the state of solenoid pilots when communication with the Controller is interrupted.

Three different modes can be selected in the page entitled "General Property → Parameter of the Unit → EB 80 System Parameters":

- Output Reset (default), all the solenoid pilots are disabled.
 Hold Last State, all the solenoid pilots remain at the state they found themselves when communication with the Controller was interrupted
- Output Fault mode, the behaviour of each pilot can be selected from among three modes:

- output Reset (default), the solenoid pilot is disabled;

- hold Last State, the solenoid pilot remains at the state it found itself when communication with the Controller was interrupted;

- output Set, the solenoid pilot activates when communication with the Controller is interrupted.

The function can be set by selecting the corresponding line at the outputs of the pneumatic module in the page entitled "General Property → Parameter of the Unit → 'Safety state".

On restoring communication, the controller resumes management of the valve solenoid pilot status. The controller must manage events appropriately to prevent uncontrolled movements.

- 2.5.4.2 Start-up parameters
 External/default parameters: during each start-up phase the system must be initialised by the controller, which sends all configuration parameters such as input/output type, etc.

 Saved parameters: at the first start-up phase, the parameters sent by the controller are saved and used for subsequent startup phases until a new
- writing by the Controller.

- 2.5.4.3 Analogue output display
 Makes it possible to choose between two display modes for the two bytes containing the analogue value.
 Mororola or big-endian logic: storage that starts from the most significant byte and finishes with the least significant byte (default).
- INTEL or little-endian logic: storage that starts from the least significant byte and finishes with the most significant byte.

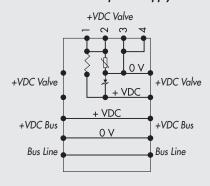
2.5.4.4 Analogue input data format

Enables the analogue input data format to be set in two modes:

• 16 bit (Sign + 15 bit) the analogue value is between +32767 and -32768 which is obtained with the maximum analogue value permitted by the type of input. The values are outlined in the table.

	Analogue value	Digital value	Signal
	+11.7 VDC	32767	Overflow
Input type -10 + 10 VDC	+10 VDC -10 VDC	28095 -28095	Nominale range
	-11.7 VDC	-32768	Underflow
	+5.8 VDC	32767	Overflow
Input type -5 + 5 VDC	+5 VDC -5 VDC	28095 -28095	Nominale range
	-5.8 VDC	-32768	Underflow
	+5.8 VDC	32767	Overflow
lament time 1 5 VDC	+5 VDC	28095	NI
Input type 1 + 5 VDC	+1 VDC	5620	Nominale range
	0 VDC	0	Underflow
	+23 mA	32767	Overflow
Input type -20 mA + 20 mA	+20 mA	28095	Nominale range
	-20 mA	-28095	· ·
	-23 mA	-32768	Underflow
	+23 mA	32767	Overflow
Input type 4 mA + 20 mA	+20 mA	27307	Nominale range
input type 4 IIIA T 20 IIIA	+4 mA	5513	Nonlinale range
	0 mA	0	Underflow

[•] Linear scaled – the analogue value measured refers to the value set in the user full scale range in "General Properties – Analogue Module Unit Parameters". Can be set individually for each analogue channel.


3. ACCESSORIES

3.1 INTERMEDIATE MODULE - M, WITH ADDITIONAL POWER SUPPLY

Intermediate modules with additional power supply can be installed between valve bases. They either provide additional power supply when numerous solenoid pilots are activated at the same time or electrically separate some areas of the valve island from others, e.g. when some solenoid valves need to be powered off when a machine safety guard needs to be opened or an emergency button has been pressed, in which case only the valves downstream the module are powered on. Various types are available with different pneumatic functions.

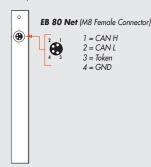
The maximum solenoid valve control current supplied by the intermediate module with additional power supply is 8A.

PIN	Colour	Function
1	Brown	+VDC
2	White	+VDC
3	Blue	GND
4	Black	GND

WARNING

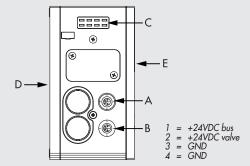
It cannot be used as a safety function as it only prevents power supply from turning on.

Manual operation or faults can cause involuntary movements. For greater security, relieve all pressure in the compressed air system before carrying out hazardous operations.


3.2 ADDITIONAL ELECTRICAL CONNECTION - E0AD

Additional Electrical Connection – E can be used to connect multiple EB 80 systems to one Profinet node. To do this, the main island must be equipped with a C3-type blind end plate with an M8 connector. The connection of multiple systems requires all the additional islands to be equipped with C3 blind end plates, except for the last one that must be fitted with a C2 blind end plate with an EB 80 Net serial line termination connector.

Optionally, if a provision for subsequent upscale is required, a C3 blind end plate can be installed also on the last-in-line island, in which case it is necessary to add an M8 termination connector code 02282R5000. For proper operation of the entire EB 80 Net system, only use the prewired, shielded and twisted M8-M8 cables shown in Metal Work catalogue.


Additional electrical connection can be used to connect bases for valves and signal modules - S, just like with islands with a Profinet node.

End plate with intermediate control

3.2.1 Electrical connections and signal display elements

- A Connection to the EB 80 Net network
- **B** Connection to power the Additional electrical line and the valve auxiliary line C EB 80 diagnostic indicator light
- **D** Connection to Signal modules
- **E** Valve base connection

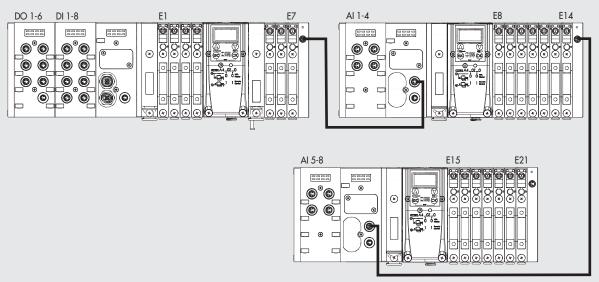
3.2.1.1 Electrical connections: pin assignment of M8 connector for Additional Electrical Connection power supply

- 1 = 24VDC Additional electrical connection power supply and input/output modules
- 2 = 24VDC Valve auxiliary power supply
- 3 = GND

The device must be earthed using the connection of the closing end plate marked with the symbol PE $\, \pm \,$

WARNING

The bus supply system also powers all the Signal modules S that are directly connected to the node; the maximum supplied current is 3.5 A.


WARNING

Failure to make the earth connection may cause faults and irrevocable damages in the event of electrostatic discharge. In order to guarantee IP65 protection class, any discharge must be conveyed and the unused M12 connector must be provided with a protective cap.

3.2.2 Addressing the additional electrical connection - EOAD All the modules are addressed in sequence.

- Addressing valve solenoid pilots from the first solenoid pilot of the Profinet node to the last solenoid pilot of the last-in-line additional island.
- Addressing digital input S modules from the first module connected to the Profinet node to the last digital input S module of the last-in-line additional island.
- Addressing digital output S modules from the first module linked to the Profinet node to the last digital output S module of the last-in-line additional island.
- Addressing analogue input S modules from the first module linked to the Profinet node to the last analogue input S module of the last linked additional island.
- Addressing analogue output S-modules from the first module linked to the Profinet node to the last analogue output S module of the last-in-line additional island.
- · Addressing Proportional Pressure Regulator from the first module linked to the Profinet node to the last module of the last-in-line additional island.

3.3 SIGNAL MODULES - S

EB 80 systems are supplied with numerous modules for controlling input or output signals.

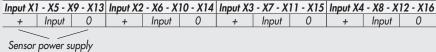
These modules can be added to systems with either a Profinet electrical connection or ones with Additional Electrical Connection. Signal modules - S can be added to the configuration of the control system by selecting them from the hardware catalogue, under the heading "module". Modules with both digital and analogue inputs and outputs are available.

3.3.1 Digital Input module

Digital 8-Input M8 module: each module can handle up to 8 digital inputs.

16 digital input terminal board module: each module can handle up to 16 digital inputs.

Each input has some parameters that can be configured individually by selecting the module in "Overall View of Devices \rightarrow Properties \rightarrow Unit Parameters".


3.3.1.1 Type of inputs and power supply
Two- or three-wire digital PNP or NPN sensors can be connected. The sensors can be supplied by either a Profinet IO node or Additional Electrical Connection power supply. In this way the sensors remain active even when the valve auxiliary power supply is switched off.

3.3.1.2 Electrical connections

Pin assignment of M8 connector

1 = +VDC (Sensor power supply) 3 = GND (Sensor power supply) 4 = Input

Pin assignment of terminal board connectors

3.3.1.3 Polarity

- The polarity of each input can be selected as follows:

 PNP, the signal is active when the signal pin is connected to +VDC
- NPN, the signal is active when the signal pin is connected to OVDC.

The signal LED light is ON when the input is active.

3.3.1.4 Operating state

The operating state of each input can be selected as follows:

- Normally Open, the signal is ON when the sensor is enabled. The LED light is on when the sensor is enabled.
 Normally Closed, the signal is ON when the sensor is disabled. The LED light is on when the sensor is disabled.

This function is designed to keep the input signal active for a minimum time corresponding to the set value, thus allowing the PLC to detect signals with low persistence times.

0 ms: filter off.

- 15 ms: signals with activation/deactivation times less than 15 ms are kept active for 15 ms.
 50 ms: signals with activation/deactivation times less than 50 ms are kept active for 50 ms.
- 100 ms: signals with activation/deactivation times less than 100 ms are kept active for 100 ms.

3.3.1.6 Input filter

This time filter can be set individually for each input and it is used to filter signals lasting less than the set time and NOT to detect them. This function can be used to avoid detecting false signals.

0 ms: filter off.

- 3 ms: signal state changes less than 3 ms are not detected.
 10 ms: signal state changes less than 10 ms are not detected.
- 20 ms: signal state changes less than 20 ms are not detected.

3.3.2 Digital Output module

Digital 8-Output M8 module: each module can handle up to 8 digital outputs.

16 digital Output terminal board module: each module can handle up to 16 digital outputs.

Each output has some parameters that can be configured individually by selecting the module in "Overview of Devices → Properties → Parameters of the Unit".

3.3.2.1 Type of output and power supply

Can be used to control different digital devices. The following devices are compatible:

- **Contactors**
- Indicators

The outputs are powered by the Profinet IO node power supply, if any, the digital 6-ouput M8 Module and the previous power supply

Check that the inrush current and continuous currents of the connected devices do not exceed the currents supplied to each connector and the maximum current of the module.

If the module is connected directly to the electrical Profinet IO connection, the power supply is the same as that of the Profinet IO node. Use suitable external protection to avoid permanently damaging the device.

3.3.2.2 Electrical connections

Pin assignment of M8 connector

Pin assignment of terminal board connectors

1 = +VDC (COM for OUT NPN)

3 = GND (COM for OUT PNP)

4 = Output

Output X1 - X5 - X9 - X13 Output X2 - X6 - X10 - X14 Output X3 - X7 - X11 - X15 Output X4 - X8 - X12 - X16

+ Output 0 + Output 0 + Output 0 + Output 0

3.3.2.3 Polarity

The polarity of each output can be selected as follows:

- PNP, when the output is active the signal pin shows +VDC. To power a load it is necessary to connect the other end to 0VDC.
 NPN, when the output is active the signal pin shows +0VDC. To power a load it is necessary to connect the other end to +VDC.

The operating state of each output can be selected as follows:

- Normally Open, the output is active when it is controlled by the control system. The Led light is on when the output is controlled.
 Normally Closed, the output is active when it is NOT controlled by the control system. The Led light is active then the output is NOT controlléd.

3.3.2.5 Fail safe outputs

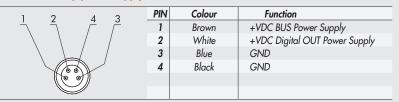
This function can be used to determine the output state when communication with the Controller is interrupted.

- Output Reset (default), all outputs are disabled.
- Hold Last State, all outputs maintain the state in which they were before the communication with the Controller was interrupted.
 Output Fault mode, it is possible to select the behaviour of each output from among three possible modes:
- Output Reset (default), the output is disabled.
- Hold Last State, the output maintains the state in which it was before the communication with the Controlled was interrupted.
- Output Set, the output is enabled when communication with the Controller is interrupted.

On restoring communication, the controller resumes management of the valve solenoid pilot status.

The controller must manage events appropriately to prevent uncontrolled movements.

3.3.2.6 Faults and alerts


The module is protected against overloads and short-circuits at each individual output. The signal resets automatically. The output is operated briefly every 30 seconds to check the fault has been removed and automatic reset has been implemented.

The controller must manage events appropriately to prevent uncontrolled movements.

3.3.3 Digital 6-Output M8 Module + electrical power supply - Dual Power Supply

Each module can handle up to 6 digital outputs. It can be configured in the same way as for the digital 8-Output M8 Module. It comes with a connector for auxiliary power supply, which makes it possible to increase the current supplied by the module and system. The power supply of the digital outputs is separated from BUS power supply, in this way it is possible interrupt the power supply to the outputs safely, through barriers or protections, while maintaining communication with the BUS terminal active. The BUS power supply must be the same that powers the BUS or ADD terminal. The BUS power supply powers all subsequent modules.

3.3.3.1 Auxiliary power supply

The current supplied is the sum of currents supplied by M8 Digital Output Module 6 plus the current supplied by all successive Signal Modules, possibly connected first to another M8 Digital Output Module 6 + electricity supply. The maximum total current available is 4 A.

3.3.4 16 Digital Input Output configurable module

Each module has 8 M8 4-pole connectors or 8 M12 5-pole connectors for handle up 16 channels, freely configurable individually, as Digital Inputs or Digital Outputs.

In addition, inputs 1', 2 and 3, 4 can be configured as channels for reading Encoders with a maximum frequency of 300 Hz, such as DC motor Encoders.

3.3.4.1 Data assignement

10 Input Bytes

Byte 0	Digital Input X1X8
Byte 1	Digital Input X9X16
DWord 2 (byte 2, 3, 4, 5)	Reading encoder 1
DWord 6 (byte 6, 7, 8, 9)	Reading encoder 2

3.3.4.2 Electrical connections

Pin assignment of M8 4 poles connector

1 = +VDC 2 = X2, X4, X6, X8, X10, X12, X14, X16 3 = GND 4 = X1, X3, X5, X7, X9, X11, X13, X15

Byte 0	Digital Output X1X8
Byte 1	Digital Output X9X16
Byte 2	Reset Encoder
,	Bit 0 reset Encoder 1
	Bit 1 reset Encoder 2

Pin assignment of M12 5 poles connector

3 Output Bytes

1 = +VDC 2 = X2, X4, X6, X8, X10, X12, X14, X16 3 = GND 4 = X1, X3, X5, X7, X9, X11, X13, X15 5 = NC

3.3.4.3 Assigning Digital I/O data bits

I/O Byte 0

Bit O	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
Port X1	Port X2	Port X3	Port X4	Port X5	Port X6	Port X7	Port X8
Pin 4	Pin 2						

I/O Byte 1

Bit O	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
Port X9	Port X10	Port X11	Port X12	Port X13	Port X14	Port X15	Port X16
Pin 4	Pin 2	Pin 4	Pin 2	Pin 4	Pin 2	Pin 4	Pin 2

3.3.4.4 Type of inputs and power supply
Two- or three-wire digital PNP sensors can be connected. The sensors can be supplied by either a Profinet node or Additional Electrical Connection power supply. In this way the sensors remain active even when the valve auxiliary power supply is switched off. Each input has some parameters that can be configured individually by selecting the module in "Overall View of Devices → Properties → Unit Parameters".

Operating state

The operating state of each input can be selected as follows:

Normally Open, the signal is ON when the sensor is enabled. The LED light is on when the sensor is enabled.
Normally Closed, the signal is ON when the sensor is disabled. The LED light is on when the sensor is disabled.

Signal persistence

This function is designed to keep the input signal active for a minimum time corresponding to the set value, thus allowing the PLC to detect signals with low persistence times.

• 0 ms: filter off.

- 15 ms: signals with activation/deactivation times less than 15 ms are kept active for 15 ms.
- 50 ms: signals with activation/deactivation times less than 50 ms are kept active for 50 ms.
- 100 ms: signals with activation/deactivation times less than 100 ms are kept active for 100 ms.

This time filter can be set individually for each input and it is used to filter signals lasting less than the set time and NOT to detect them. This function can be used to avoid detecting false signals.

0 ms: filter off.

- 3 ms: signal state changes less than 3 ms are not detected.
- 10 ms: signal state changes less than 10 ms are not detected.
- 20 ms: signal state changes less than 20 ms are not detected.

3.3.4.5 Type of outputs and power supply

Each input has some parameters that can be configured individually by selecting the module in "Overall View of Devices → Properties → Unit Parameters.

Can be used to control different digital devices. The polarity of signal is PNP

- Solenoids
- **Contactors**
- Indicators

The outputs are powered by the Profinet IO node power supply, if any, the digital 6-ouput M8 Module and the previous power supply (see 3.3.3).

Check that the inrush current and continuous currents of the connected devices do not exceed the currents supplied to each connector and the maximum current of the module.

If the module is connected directly to the electrical Profinet IO connection, the power supply is the same as that of the Profinet IO node. Use suitable external protection to avoid permanently damaging the device.

Operating state

The operating state of each output can be selected as follows:

Normally Open, the output is active when it is controlled by the control system. The Led light is on when the output is controlled.

Normally Closed, the output is active when it is NOT controlled by the control system. The Led light is active then the output is NOT controlled.

Fail safe outputs

This function can be used to determine the output state when communication with the Controller is interrupted.

Output Reset (default), all outputs are disabled.

- Hold Last State, all outputs maintain the state in which they were before the communication with the Controller was interrupted.
 Output Fault mode, it is possible to select the behaviour of each output from among three possible modes:
- - Output Reset (default), the output is disabled.
 - Hold Last State, the output maintains the state in which it was before the communication with the Controlled was interrupted.
 - Output Set, the output is enabled when communication with the Controller is interrupted.

On restoring communication, the controller resumes management of the valve solenoid pilot status. The controller must manage events appropriately to prevent uncontrolled movements.

3.3.4.6 Encoder parameters configuration

Count inversion

This function allows you to invert the pulse count while maintaining the same direction of rotation of the motor.

0 No inversion

1 Inversion of count

Count reset mode

This function allows you to reset the pulse count via a PLC command or from a module input. PLC = the reset is performed by activating bits 0 (Ch1) and 1 (Ch2) of Output Byte 2 Input No. 5...16 the reset is performed by activating the set input

3.3.4.7 Faults and alarms

Each module is protected against overload and short-circuit. The alarm signal is reset automatically.

The output is controlled briefly every 30 seconds to check whether the failure has been removed and to perform automatic reset.

The Master must manage the event properly to prevent any uncontrolled movements.

3.3.5 Analogue 4-Input M8 Module
Each module can handle up to 4 analogue inputs with freely configurable voltage and current.

This module converts signals with a resolution of 15 bits plus the sign. The numerical values available to the control system are between -32768

Some parameters can be configured individually, by selecting the module in the page entitled "Overview of Devices ightarrow Properties ightarrowParameters of the Unit".

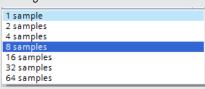
The Module can recognise out-of-range values, and disconnection of the sensor itself in the case of 4-20 mA or 1-5 VDC sensors, due to a broken cable for example.

3.3.5.1 Electrical connections: Pin assignment of M8 connector

The supply voltage +VDC corresponds to either the Profinet IO node supply voltage or the Additional Electrical Connection.

1 = +VDC2 = + Analog IN3 = GND4 = - Analog IN Connector - ring = Shield

3.3.5.2 Signal range


Each channel can be configured with a type of input signal. The following types are available:

If the channel is not used, it must be disabled by selecting OFF in order to avoid any interference.

3.3.5.3 Filtering the value measured

This function filters the value measured to make reading more stable. A mobile average is calculated on the number of samples chosen. Reading slows down as the number of values increases.

3.3.5.4 User full scale

This value can be set to change the scale of numerical values sent to the control system as a function of the analogue signal value. 'Linear Scaled' must be enabled in the Analogue Data Format field - General Parameters - EB80 Series Module Unit Parameters.

Makes it possible to set values up to +32767. The value set is valid for positive and negative signals, therefore if the signal range is set to 0-10 VDC for example, the maximum value will be +32767.

If the signal range is set to +/-10VDC the limit values will be +32767 and -32768.

This function makes it possible to obtain a read-out in engineering format, therefore if a 0-10 bar pressure transducer is connected to the analogue channel and the user full scale is set to 10000, the value of the signal is expressed in mbar.

3.3.5.5 Connection of sensors

3-wire voltage sensors

Pin 1 = +VDC sensor power supply

Pin 2 = + Analogue input

Pin 3 = GND

Pin 4 = NC

2-wire current sensors

Pin 1 = +VDC sensor power supply

Pin 2 = + Analogue input

Pin 3 = NC

Pin 4 = NC

4-wire voltage sensors (differential)

Pin 1 = +VDC sensor power supply

Pin 2 = + Analogue input

Pin 3 = GND

Pin 4 = - Analogue input

3-wire current sensors

Pin 1 = +VDC sensor power supply

Pin 2 = + Analogue input

Pin 3 = GND

Pin 4 = NC

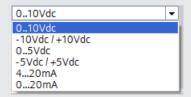
3.3.6 Analogue 4-Output M8 Module

Each module can handle up to 4 analogue outputs with freely configurable voltage and current.

This module converts signals with a resolution of 15 bits plus the sign. The numerical values settable in the control system are between -32768 and +32767. The data format is Linear Scaled.

Some parameters can be configured individually, by selecting the module in the page entitled "Overview of Devices o Properties oParameters of the Unit".

3.3.6.1 Electrical connections: Pin assignment of M8 connector


1 = +VDC

2 = + Analog OUT3 = GND

The supply voltage +VDC corresponds to either the power supply voltage of the Profinet IO node or the Additional Electrical Connection.

3.3.6.2 Signal range

Each channel can be configured with a type of input signal. The following types are available:

3.3.6.3 Minimum monitor value - Maximum monitor value

When these two functions are enabled, the values set in the Minimum and Maximum fields cannot be exceeded. This function can only be used when a set value must never be exceeded, not even by mistake. The reference values are set in the Minimum / Maximum fields.

3.3.6.4 Safe output status

This function can be used to determine the value of the analogue output signal when communication with the Controller is interrupted. The value of the output signal is set in the output value field in fault mode.

3.3.6.5 User full scale

With this function you can set the scale of numerical values sent by the Controller to obtain the output signal. For example, by setting a value = 10000, with a 0/10VDC signal, the numerical value set in the Controller is equal to mV.

3.3.7 M8 analogue 4-input module for temperature measurement
Each temperature measurement module S can handle up to 4 inputs that can be configured freely for the use of temperature sensors or

thermocouples of various type. They come with some individually configurable parameters.

Temperature compensation (CJC – Cold-Junction Compensation) for the use of thermocouples occurs internally, under normal ambient temperature conditions, there is no need to install an external cold-Junction. The installation of the conditions of the compensation of the conditions of the compensation of the conditions of the compensation of the compensati the ambient temperature. Use a PT1000 sensor, such as the TE Connectivity NB-PTCO-157 sensor or the equivalent. The temperature measurement module sends the values read to the control system, with an input word for each channel. Up to a total of 4 words per module.

Type of sensors supported Pt 100, Pt 200, Pt 500, Pt 1000 Ni 100, Ni 120, Ni 500, Ni 1000

Type of connection with 2, 3, 4 wires

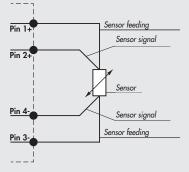
Type of thermocouple supported

Ĵ, Ē, T, K, N, S, B, Ř

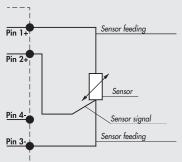
3.3.7.1 Electrical connections of temperature sensors (Pt and Ni series)

Pin 1 = + Sensor power supply

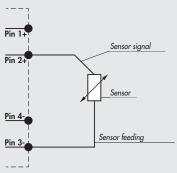
Pin 2 = + Input signal, positive


Pin 3 = - Sensor power supply

Pin 4 = - Input signal, negative


Ring nut = Functional earthing

Each input has two pins for constant sensor feeding and two pins for sensor signal. Connections with 2, 3 and 4 wires can be made depending on the desired degree of precision. Maximum precision can be obtained with 4-wire connection.

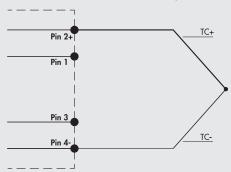

4-wire connection

3-wire connection

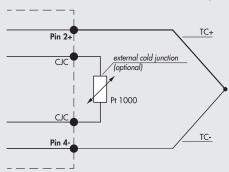
2-wire connection

In general, only shielded cables must be used for the transmission of analogue signals.

3.3.7.2 Electrical thermocouple connections


Pin 1 = CJC - Cold-Junction Compensation via external sensor Pt1000 (optional)

Pin 2 = TC+ Input signal from sensor
Pin 3 = CJC - Cold-Junction Compensation via external sensor Pt1000 (optional)


Pin 4 = TC- Input signal from sensor

Ring nut = Functional earthing

Standard connection – internal cold junction

Connection with external Cold Junction - Optional

3.3.7.3 Unit Parameters

Common parameters

Unit of measurement: temperature reading option °Celsius or °Fahrenheit

 Noise suppression: suppresses electrical noise generated by mains electricity supply. This parameter works in conjunction with the "Acquisition Filter" parameter.

50 Hz: suppresses noise generated by 50Hz mains electricity supply

60 Hz: suppresses noise generated by 60Hz mains electricity supply 50/60 Hz slow: suppresses noise generated by 50Hz and 60Hz mains electricity supply. A high level of filtering is achieved, but with a delay

50/60 Hz fast: suppresses noise generated by 50Hz and 60Hz mains electricity supply. Very fast acquisition is achieved, but with a low level of filtering.

Maine aummuneien	Syı	nc 3	Syr	nc 4
Noise suppression	Noise attenuation (dB)	Data acquisition delay (ms)	Noise attenuation (dB)	Data acquisition delay (ms)
50 Hz	95	60	120	80
60 Hz	95	50	120	67
50/60 Hz Slow	100	300	120	400
50/60 Hz Fast	67	60	82	80

Channel Inputs

Type of sensor and related thermal coefficient: possible choice of the type of sensor used among those available.

lype of sensor and related thermal coefficient: possible choice of the type of sensor used among those available.
Type of connection (for RTD only): possible choice of the type of sensor connection, if with 2, 3 or 4 wires.
Cold joint compensation (for TC only): possible choice of an external cold joint instead of the one already installed internally. The external cold joint (Pt1000) is recommended in case of sudden changes in the ambient temperature.
Measurement resolution: possible choice of measurement resolution in tenths or hundredths of °C. The resolution in hundredths only applies to RTD sensors, with temperature reading of maximum +/- 327°C
Sensor disconnected signalling: if enabled, the breakage of a wire generates an alarm.
Short-circuit signalling (for RTD only): if enabled, a short circuit of the sensor connection generates an alarm.
Minimum value monitor / Maximum value monitor: when these two functions are enabled, an alarm is generated when the temperature goes below the set Minimum value or above the set Maximum value.

below the set Minimum value or above the set Maximum value.

• Measured Value Filter: a mathematical filter that ensures a more stable temperature reading. By setting a filter value on the sampling of the

highest signal, improved reading stability is achieved but with a longer delay in data display.

Acquisition filter: it defines the type of digital filter. It works in conjunction with the "Noise suppression" parameter.

By setting the Sync 4 filter, a level of filtering higher than the one with the Sync 3 filter is achieved, but with a longer delay in data acquisition.

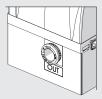
4. PROPORTIONAL PRESSURE REGULATOR

4.1 INTENDED USE

The EB 80 pressure regulator can be integrated into EB 80 Profinet IO systems and offers—advanced diagnostic functions. The system allows to connect of up to 16 units, they can be connected to the ADD module and can also be used without valves.

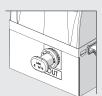
4.2 FEATURES

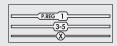
- Electrical connection: EB 80 Profinet IO system.
- Preset pressure range 0.05-10 bar with possible full scale and minimum pressure regulation.
- 10-300 mbar adjustable deadband.
- The supply pressure: FS+ at least 1 bar, max 10 bar (in case of a regulated pressure of 10 bar is needed, is allowed a supply pressure of 10.5 bar).
- 12-24 VDC power supply.
- IP65 index of protection.
- Pressure reached indicator led.
- Graphical display and keypad to display the pressure, unit of measurement and parameter setting.


4.3 PNEUMATIC CONNECTION

Pneumatic connection is via the Compressed air supply - P module. It is important not to exceed 10 bar max (10.5 bar in case of a regulated pressure of 10 bar is needed) and the compressed air to be filtered at 10 µm and dried, to prevent impurities or excessive condensate from causing a malfunction. The supply pressure must always be higher than the preset pressure.

The regulator pressure must be at least 1 bar higher than the full scale value.


2 versions are available:

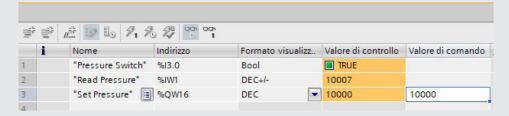

Local output, the air flow ducts of the base are the full flow type, the regulated pressure is available on the port of the Pressure Regulator base. The subsequent bases maintain supply pressure.

Regulation in series, the pressure of the subsequent bases is regulated by the pressure regulator, the same pressure is also available on the port of the Pressure Regulator base.

By applying a silencer on the exhaust port it is possible that the flow rates and response times may change. Periodically check the clogging of the silencer and replace it if necessary.

4.4 OPERATING PRINCIPLEUsing a software algorythm, the control circuit compares the input signal with the output pressure measured by the pressure sensor. When there is a change, it activates the inlet and outlet solenoid valves to re-establish an equilibrium. This gives an output pressure that is proportional to the input signal.

N.B.: removing the power supply, the outlet pressure doesn't get discharged.


4.4.1 Function diagram

4.5 COMMISSIONING

- 4.5.1 Addressing
 The Proportional Pressure Regulator provides:
 2 output bytes for pressure control;
 2 input bytes for regulated pressure reading;
 1 byte for pressure switch function (bit 0).

The pressure values are expressed in mbar. The pressure set can be set from 0 to 10000 mbar.

4.6 SETTING

NB: the changes to the parameters can be made via the Controller Profinet IO or from the keyboard.

The keyboard settings are temporary, when the system is restarted, the settings of the Controller are restored.

Settings from the keyboard

In the version with the display, Press OK and ESC together to access the setting menu. Select the parameter using the arrow keys.

Press ESC to return to the previous page.

 $igthed{\Lambda}$ During setting, pressure regulation is NOT active.

4.6.1 DISPLAY

Language

Italiano

English

Deutsch Español

Français

Unit of meas

bar

psi MPa

N.B.: Pressure settings, like pressure regulated, dead band, full scale and minimum pressure, when set by the Controller, are always defined in mbar.

Contrast - The function is only available from the keyboard

- Manual display contrast adjustment.
- Select **CONTRAST** using the arrow keys, then press OK.
- Select the value using the arrow keys, then press OK.
- Compensation as a function of temperature is automatic.

Orientation

Allows you to rotate the display 180 °

- Select **ORIENTAT**.
- Press OK to rotate the diplsay

4.6.2 SET UP

Input

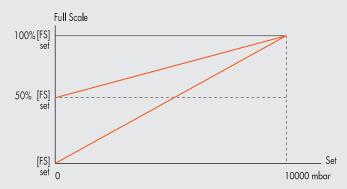
BUS

Keypad

• For the type of keypad input, set the pressure value using the arrow keys. When you press the display buttons, the set pressure appears; when you release them, the preset pressure is displayed.

Dead band

This indicates the pressure range in proximity to the set pressure, within which regulation is active. The deadband is + and - the set value. It is advisable to enter low values, 10 or 15 mbar, only if high regulation accuracy is required. High accuracy involves more work for the solenoid valves.



Full scale

This indicates the maximum preset pressure. The value is expressed in mbar, the maximum settable value is 10000 mbar. For optimal regulation, the supply pressure must be equal to FS (Full Scale) + 1 bar.

Minimum pressure

Indicates the minimum regulated pressure with set 0. Its value must be less than the full scale set.

The minimum value which can be set with Keyboard Set is the Minimum Pressure value.

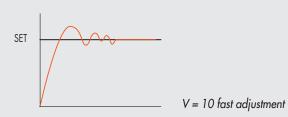
Fail safe output - The function is available only from PLC setting
This function can be used to determine the state of Proportional Pressure Regulator when communication with the Master is interrupted..

Three different modes can be selected in the Configuration Parameters of the Unit:

Output Reset (default), The pressure regulation is disabled and set to 0 (or at minimum pressure, if set).

Hold Last State, all the Proportional Pressure Regulators remain at the state they found themselves when communication with the Master was

Output Fault mode, the behaviour of Proportional Pressure Regulator can be selected from among two modes:


Hold Last State, all the Proportional Pressure Regulators remain at the state they found themselves when communication with the Master was interrupted.

Output Fault mode, the Proportional Pressure Regulator regulates the pressure at the value set on the field "Fault mode value".

Speed regulation control

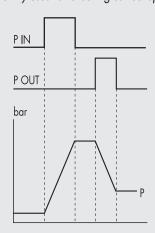
Can be used to change the regulator response speed.

Zero setting (temperature compensation) - The function is only available from the keyboard

The instrument is calibrated at an ambient temperature of 20°C. The pressure value measured by the internal transducer can vary with the ambient temperature and it may be necessary to reset the reading.

The value read can be reset through the reset function.

The function is only active if the pressure displayed is less than 150 mbar.


Upon zero resetting, the temperature compensation activates and the consequent change in pressure is automatically compensated.

CAUTION: the resetting has an effect on the calibration of the instrument. Before making it, make sure the supply pressure has been removed and the output circuit is disconnected.

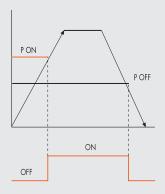
4.6.3 DEBUG - The function is only available from the keyboard

Utility used for checking correct operation of the two solenoid valves.

- Select **DEBUG**, and press OK.
- Select **PIN** and press OK. The in solenoid valve activates and the pressure increases
- Press OK. The in solenoid valve deactivates and pressure stabilizes.
- Select POUT and press OK. The out solenoid valve activates and pressure decreases
- Press OK, the out solenoid valve deactivates and pressure stabilizes.

4.6.4 PASSWORD - The function is only available from the keyboard

This is a three-digit code used to protect the set configuration.

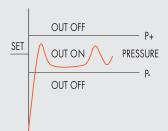

- Select SET PASSWORD with the arrow keys and click OK. On the setting page, use the arrow keys to enter the desired value and click OK to confirm. The system then displays the confirmation message "PASSWORD SAVED".
- Select PASSWORD, and click OK to enable/disable the function. If the password set to ON it prevents access to the configuration menu.
 When you press OK+ESC together to access the configuration menu, you are prompted to enter the password.
 Enter the saved password. You can use the arrow keys to change the value or click OK to change the field.
 If the password is set to OFF, it is not enabled.

If you forget the password, contact the manufacturer to obtain a password reset code.

4.6.5 DIGITAL OUTPUT

A bit is available for the digital pressure switch function with the relative activation / deactivation thresholds, P ON (P +) and P OFF (P-) expressed in mbar.

Pressure switch configuration (P)

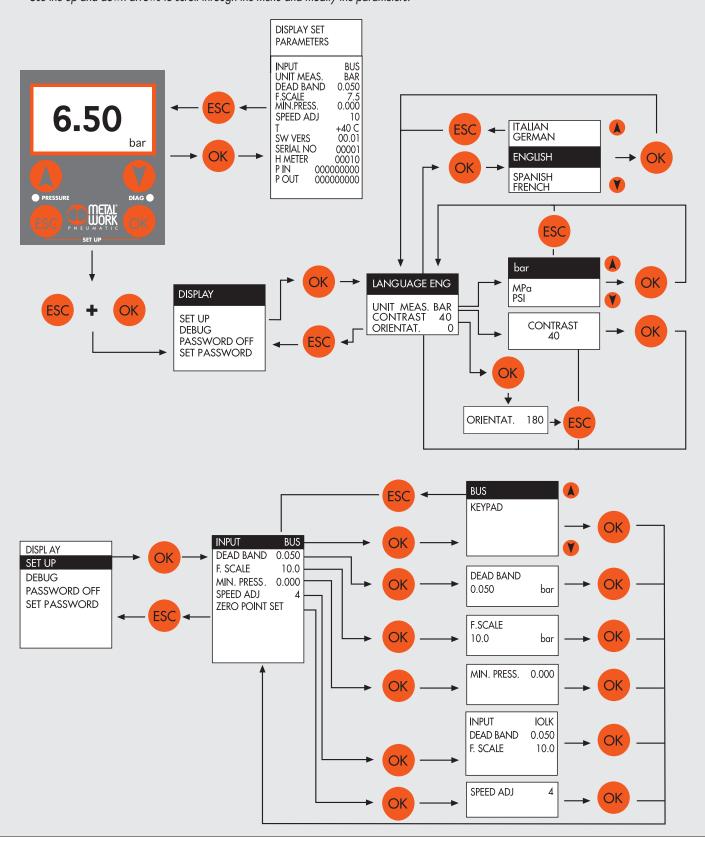

Keyboard setting:

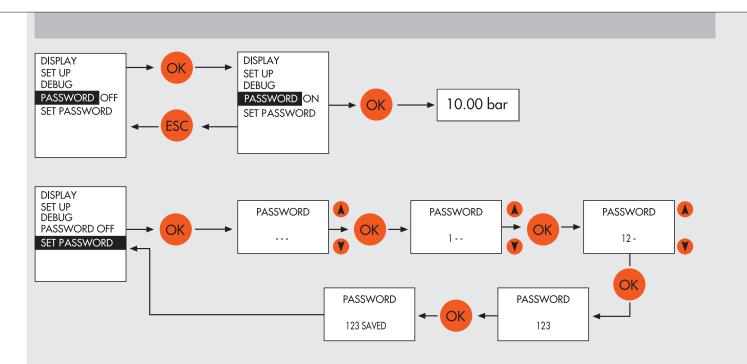
- Select **OUTPUT** using the arrow keys, then press OK.
- Select CONFIGUR. to select the operating mode, then press OK.
- Select **PRESSURE SWITCH**, then press OK. **PRESSURE SWITCH** mode, shown with **CONFIGUR. P.** has been selected.
- Use the arrow keys to select PRESSURE SWITCH and press OK.
- Select P ON and press OK. Enter the desired activation pressure and press OK.
- Select **P OFF** and press OK. Enter the desired deactivation pressure and press OK.
- Press ESC to exit the menu.

Set (S) reference

This function can be used to make a "variable" setting for the pressure switch.

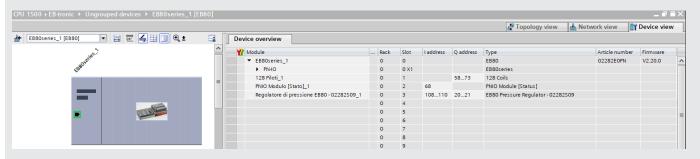
Out is activated when the preset pressure is reached, with a tolerance defined by P+ and P-.


Keyboard setting.

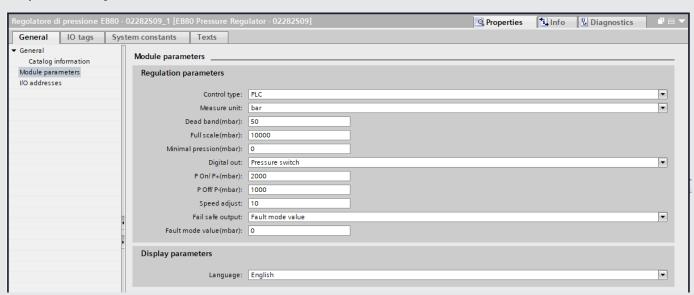

- Select **OUTPUT** using the arrow keys, then press OK.
- Select **CONFIGUR**. to select the operating mode, then press OK.
- Select SET. REF and press OK. SET REFERENCE mode, shown with CONFIGUR. S. has been selected.
- Use the arrow keys to select **PRESSURE SWITCH** and press OK.
- Select SET.REF and press OK.
- Select P+ and press OK.
- Enter the upper tolerance pressure and press OK.
- Select P- and press OK. Enter the lower tolerance pressure and press OK.
- Press ESC to exit the menu.

4.7 ACCESS TO THE MENU FROM THE KEYBOARD

- Press OK to display the set parameters.
 Press OK and ESC together to access the parameter setting menu.
 Use the up and down arrows to scroll through the menu and modify the parameters.



4.8 NSTALLATION SYSTEM TO AN Profinet NETWORK


Example of configuration with TIA Portal

The pressure regulator EB 80 allows to control the pressure, using 2 bytes of output and 2 bytes of input.

Configuration in TIA PORTAL

Unit parameter configuration

5. DIAGNOSTICS

The diagnosis of the EB 80 Profinet IO system is defined by the state of the interface LED lights. Each component in the system relays its state, locally by LED lights, and to the Profinet IO node by software messages.

5.1 Profinet IO NODE DIAGNOSTIC MODE
The diagnosis of the EB 80 Profinet IO system is defined by the state of the interface Led SF (Sistem Failure), BF (Bus Failure) e P1/P2.

Led	STATE	Meaning
	OFF O	No connection to Profinet IO
P1 / P2 link/act	ON (green)	The module is connected to the network but there is no data exchange
	GREEN (flashing)	The module communicates with the network
	OFF O	No error
SF	RED (flashing)	Initialisation of DCP system
	ON (red)	System error
	OFF O	No error
BF	RED (flashing)	No data exchange with Controller. Connection to the network is interruptive or faulty. Name of device or IP address incorrect.
	ON (red)	Device configuration or parametrisation faulty

5.2 EB 80 SYSTEM DIAGNOSTIC MODE – ELECTRICAL CONNECTION
Diagnosis of the EB 80 system - Electrical Connection - is defined by the state of Power, Bus Error and Local Error LED lights.
Diagnostic functions of the EB 80 system relay the state of the system via error codes in hexadecimal or binary format to the controller, in order of priority. The state byte is interpreted by the controller as an input byte.
The table below shows the correct interpretation of the codes.

	LED light stat	'e	Hex code	Meaning	Notes	Solution
Power	Bus Error	Local Error				
ON (green)	OFF O	ON (red)	0xFF	System limits exceeded, comunication line data overflow	Number of I/Os to be checked simultaneously is too high or the control frequency is too high.	Modify the system by reducing the number of I/Os to be checked simultaneously. Contact technical support
ON (green)	OFF O	ON (red)	OxDC ÷ OxEB	Fault with Pressure Regulator module	-	Contact technical support
ON (green)	OFF O	ON (red)	0xD4 ÷ 0xD7	Fault with a temperature analogue input module	Sensor not connected Wrong parameters	Check the connection and the parameters set
ON (green)	OFF O	ON (red)	0xD0 ÷ 0xD3	Analogue input module not calibrated	-	Contact technical support
ON (green)	OFF O	ON (red)	0xCC ÷ 0xCF	Fault with analogue output or total module current too high	Individual output fault/ module over-demand/ DAC errors	Turn off power supply and remove the cause of failure
ON (green)	OFF O	ON (red)	0xC8 ÷ 0xCB	Fault with analogue input or total module current too high	Under-overflow out of range single input / over-absorption of the module	Turn off power supply and remove the cause of failure
ON (green)	OFF O	ON (red)	0xB0 ÷ 0xC5	Digital output failure or total current of module too high	Short-circuit of an individual output / module overcurrent	Turn off power supply and remove the cause of failure
ON (green)	OFF O	OFF O	0xA0 ÷ 0xAF	Overcurrent of a digital input	Signalled by one input	Turn off power supply and remove the cause of failure
ON (green)	OFF O	ON (red)	0x20 ÷ 0x9F	Valve 1 / 128 faulty **	Solenoid pilot short-circuited, interrupted or not connected	Turn off power supply and remove the cause of failure
GREEN (flashing)	OFF O	OFF O	0x17	No auxiliary power	-	Insert auxiliary power supply

	LED light star	te	Hex code	Meaning	Notes	Solution
Power	Bus Error	Local Error				
ON (green)	RED (double flashing)	OFF O	0x16	Address / configuration of a valve base or a signal module error	Valve base or signal module faulty	Turn off power supply and remove the cause of failure
GREEN (flashing)	OFF O	ON (red)	0x15	Power supply out of range (Under/over-voltage)	-	Power the system with a voltage within the allowed range
ON (green)	RED (single flashing)	OFF O	0x14	Error in the configuration parameters of a valve base or a signal module	Current configuration not corresponding to the one stored in the device.	Repeat the configuration procedure. If the error persists, replace the faulty component.
ON (green)	ON (red)	OFF O	0x10	EB 80 Net internal communication faulty	Additional island configured but not connected. Connection between valve bases faulty or incomplete (blind end plate C is not correct for the fieldbus).	Check the correct connection of the ent system. Make sure the blind end plate is of the type suitable for the fieldbus. When the communication is restored, the alarm rests automatically after 3 seconds.
ON (green)	RED (flashing)	OFF O	0x0F	EB 80 Net internal communication disturbed.	Communication is faulty due to electromagnetic disturbances.	Move the power cables away from the signal cables. Check the noise levels we the EB 80 Manager.
ON (green)	OFF O	RED	0×09	Error in configuring the head parameters.	At least a value is wrong or out-of-range.	
GREEN (flashing)	OFF O	RED (flashing)	0x08	Number of solenoid pilots connected to the network greater than 128		Restore correct configuration of the val- bases, by removing any excess ones.
ON (green)	OFF O	RED (double flashing)	0x07	Mapping error. Number of connected valve bases different from or greater than the max. admissible number. Closing plate on S modules not connected.	Current configuration not matching the one stored in the device. The EB 80 Net network not properly completed.	Turn off power supply. Restore the correct configuration and repeat the configuration procedure. Turn off power supply, install the closing plate using the terminal board provided or insert the termination connector.
ON (green)	OFF O	RED (single flashing)	0x06	Addressing error: • type of module not allowed; • no valve base or signal module connected.	-	Connect the valve bases or the signal modules of the type allowed.
GREEN (flashing)	OFF O	RED (flashing)	0x05	Number of digital inputs connected to the network greater than 128		Disconnect excess modules
ON (green)	OFF O	RED ;; (flashing)	0x04	Number of digital outputs connected to the network greater than 128		Disconnect excess modules
ON (green)	OFF O	RED ;; (flashing)	0x03	Number of analogue inputs connected to the network greater than 16	-	Disconnect excess modules
ON (green)	OFF O	RED (flashing)	0x02	Number of analogue outputs connected to the network greater than 16	-	Disconnect excess modules
ON (green)	OFF O	OFF O	0x00	The system works properly	-	-

^{**} Proceed as follows to identify the position of the faulty valve: Error code HEX – 0x20 = n

5.3 EB 80 SYSTEM DIAGNOSTIC MODE - VALVE BASE
The diagnosis of bases for valves is defined by the state of the interface Led lights.
The generation of an alarm activates a software electrical connection message with the code associated with the detected error.

Led Green Base	Meaning	FAULT signal output state and storage
OFF O	The output is not controlled.	FAULT signal output – OFF
•	The output is active and works properly.	FAULT signal output – OFF
ON (double flashing)	Indication for each output. Solenoid pilot interrupted or missing (dummy valve or valve with a solenoid pilot installed on a base for two solenoid pilots).	FAULT signal output – Active The output resets automatically when the cause of failure is removed. The FAULT signal can only be reset by disconnecting the power supply.
(flashing)	Indication for each solenoid pilot output or base output short-circuited.	FAULT signal output – Active, permanent The output is turned off. It can only be reset by disconnecting the power supply.
(flashing + simultaneously flashing of all Led lights of the base)	Voltage out of range Less than 10.8VDC or greater than 31.2VDC Caution! Voltage greater than 32VDC irrevocably damages the system.	FAULT signal output – Active, self-resettable to return within the operating range. The alerts remain on 5 seconds after resetting.

5.4 EB 80 SYSTEM DIAGNOSTIC MODE – SIGNAL MODULES - S
The diagnosis of Signal Modules - S is defined by the state of the interface Led lights.
The generation of an alarm activates a software electrical connection message with the code associated with the detected error.

5.4.1 Diagnostic mode of Signal Modules - S - Digital Inputs - 16 Digital Input / Output configurable module

Led X1X16	Meaning	Solution
OFF O	Input not active	-
ON (green)	Input active	-
ON (red)	Indication for each input. Short-circuited or overloaded input.	Remove the cause of the fault
(flashing + all Led lights flashing simultaneously)	Overall current input too high.	Remove the cause of the fault

5.4.2 Diagnostic mode of Signal Modules - S – Digital Outputs - 16 Digital Input / Output configurable module

Led X1X16	Meaning	Solution
OFF O	Output not active	-
ON (green)	The output is active and works properly.	-
ON (red)	Indication for each output. Short-circuited or overloaded output.	Remove the cause of the fault
RED (flashing + all Led lights flashing simultaneously)	Overall current input too high.	Remove the cause of the fault

5.4.3 Diagnostic mode of Signal Modules - S - Analogue Inputs

Led X1X4	Meaning	Solution
OFF O	Input not active	-
ON (green)	The input is active and works properly	-
GREEN (flashing)	Analogue signal outside permitted range	Set input type correctly Replace sensor with a permitted type
ON (red)	Analogue signal value too high/low	Set input type correctly Replace sensor with a permitted type
GREEN (simultaneously flashing of all Led lights of the base)	Overload or short circuit signal	Remove the cause of the fault

5.4.4 Diagnostic mode of Signal Modules - S - Analogue Outputs

Led X1X4	Meaning	Solution
OFF O	Output not active	-
ON (green)	The output is active and works properly	-
(all Led lights flashing simultaneously T ON 0.2 sec T OFF 1 sec)	Value of power supply voltage outside permitted range	Power the module correctly
(all Led lights flashing simultaneously T ON 0.2 sec T OFF 0.2 sec)	Power supply overload or short circuit signal	Remove the cause of the fault
ON (red)	All LEDs active simultaneously Internal fault	Replace the module
GREEN (flashing T ON 0.6 sec T OFF 0.6 sec)	Output overloaded or short circuited	Remove the cause of the fault. Disconnect the electricity supply to reset the fault signal.
(all Led lights flashing simultaneously T ON 0.2 sec T OFF 0.2 sec)	Module overtemperature	Remove the cause of the fault
GREEN (double flashing T ON 0.6 sec T OFF 1 sec)	Open circuit signal (For 4/20 mA or 1/5VDC channels)	Remove the cause of the fault
(flashing T ON 0.6 sec T OFF 0.6 sec)	Value set not permitted.	Remove the cause of the fault. Disconnect the electricity supply to reset the fault signal.

5.4.5 Diagnostic mode of Signal Modules - S - Analogue Inputs for temperature measurement

Led X1X4	Meaning	Solution
OFF O	Input not active	-
ON (green)	The input is active and works properly	-
GREEN RED (all Led lights flashing simultaneously T ON 0.2 sec T OFF 1 sec)	Value of power supply voltage outside permitted range	Power the module correctly
GREEN	Value lower than the value set under: Minimum Value	Enter the correct values
(flashing T ON 0.2 sec T OFF 0.2 sec)	Value higher than the value set under: Maximum Value	
ON (red)	The connected sensor is short-circuited	Remove the cause of the fault
GREEN RED (all Led lights flashing simultaneously T ON 0.5 sec T OFF 0.5 sec)	Internal error	Remove the cause of the fault. If the error persists, replace the module
(flashing T ON 0.2 sec T OFF 0.2 sec)	Open circuit signal	Remove the cause of the fault
(flashing T ON 0.6 sec T OFF 0.6 sec)	Sensor out of range	Remove the cause of the fault

5.5 EB 80 SYSTEM DIAGNOSTIC MODE – ADDITIONAL ELECTRICAL CONNECTION
The diagnosis of Additional Electrical Connection is defined by the state of the interface Led lights.
The generation of an alarm activates a software electrical connection message with the code associated with the detected error.

POWER	BUS ERROR	Meaning	Solution
ON (green)	OFF O	The additional island works properly	-
ON (green)	ON (red)	Failure. For the correct identification, refer to the error code or local diagnostics.	Turn off power supply and remove the cause of failure

5.6 DIAGNOSTICS OF THE PROPORTIONAL PRESSURE REGULATORThe diagnosis is defined by the state of the interface LED lights and by the status byte.

5.6.1 Led interface

	LED PRESSURE	SOLUTION
: Pi	Flashing	In regulation
•	ON	Regulation OFF
0	OFF	No power supply
	LED DIAG	SOLUTION
•	ON	Pressure switch output ON
0	OFF	Pressure switch output OFF

5.6.2 Troubleshooting

PROBLEM	POSSIBLE CAUSES	SOLUTION
The display does not come on	No power supply	Check the power supply, make sure it is
		enough and check the wiring is in accordance
		with the wiring diagram
The unit does not respond or responds wrongly to the	Wrong input signal configuration	Configure the appropriate type of input from the men
set point		
The unit does not reach the desired pressure	Setpoint too low	Provide a suitable setpoint
	The full-scale setting is at a lower pressure than desired	Set the full scale correctly
	The supply pressure is too low	Increase the supply pressure
The display shows an unreal value	Wrong unit of measurement	Check the unit of measurement
The display is difficult to read	Poor contrast	Adjust the contrast
The unit adjusts continually	Air leak in the circuit after the unit	Eliminate the leak
	Continuous variation in volume	Normal behaviour; the unit has to keep
		adjusting the maintain the preset pressure
	Deadband too small	Increase the deadband
Other problems	Contact the manufacturer	

5.6.3 List of allarms

ALARM	POSSIBLE CAUSES	SOLUTION
Supply voltage alarm too high	Supply voltage higher 30VDC	Increase to a sufficient voltage.
Supply voltage alarm too low	Supply voltage below 12VDC	_
Alarm P. INP CORTOC. OVDC	Supply solenoid valve has shortcircuited	
Alarm P. OUT CORTOC. OVDC	Drain solenoid valve has shortcircuited	Switch the unit off and back on again. If the
P. INP alarm DISCONNECTED	Fill solenoid valve disconnected	alarm persists, contact the manufacturer.
P. OUT alarm DISCONNECTED	Drain solenoid valve disconnected	
PRESSURE OUT OF RANGE ALARM	Downstream pressure exceeds 10200 mbar	Check to see if the drain is blocked. The alarm resets
		automatically when the pressure drops below the
		threshold.
Pressure sensor disconnected alarm	Electromagnetic disturbances	Move away the cause and switch on the unit
	Sensor fault.	Contact the manufacturer.

6. CONFIGURATION LIMITS

The EB 80 network can be configured by assembling the islands according to the requirements of the system in which it is mounted. For the system to operate safely and reliably, it is important to keep to the constraints associated with the serial transmission system based on CAN technology and use shielded, twisted cables with controlled impedance, supplied by Metal Work.

The system constraints are defined by the following parameters of the assembly:

• the number of valve bases (nodes)

• the number of signal modules (nodes)

• the number of Additional Electrical Connections (nodes)

• the length of connection cables.

A high number of nodes reduces the maximum length of connection cables, and vice versa.

No. of nodes	Maximum cable length	
70	30 m	
50	40 m	
10	50 m	

7. TECHNICAL DATA

Profinet IO ELECTRICAL CONNECTION

TECHNICAL DATA		
Fieldbus		100 Mbit/s - Full-duplex – Supports Fast Start Up, RT communication, Shared Device, Identification & Maintenance 1-4
Factory settings		Module denomination: EB80series - IP address: 0.0.0.0
Addressing		DCP Software
Supply voltage range	VDC	12 -10% 24 +30%
Minimum operating voltage	VDC	10.8 *
Maximum operating voltage	VDC	31.2
Maximum admissible voltage	VDC	32 ***
Protection		Module protected from overload and polarity inversion. Outputs protected from overloads and short-circuits.
Connections		Fieldbus: 2 M12 Female, D encoding, internal switch. Power supply: M8, 4-PIN
Diagnostics		Profinet IO: via local LED lights and software messages. Outputs: via local LED lights and state bytes
Bus power supply current absorption		nominal lcc 180 mA at 24 VDC
Maximum supplied current for Signal modules S mA		3500
Maximum number of pilots		128
Maximum number of digital inputs		128
Maximum number of digital outputs		128
Maximum number of analogue inputs		16
Maximum number of analogue outputs		16
Maximum number of inputs for temperatures		16
Data bit value		0 = non-active; 1= active
State of outputs in the absence of communication		Configurable for each output: non-active, holding of the state, setting of a preset state

^{*} Minimum voltage 10.8VDC required at solenoid pilots. Check the minimum voltage at the power suply output using the calculations see page 39.

SIGNAL MODULES - S - DIGITAL INPUTS

TECHNICAL DATA		8 M8 Digital Inputs	16 Digital Inputs terminal board
Sensor supply voltage		Corresponding to power voltage	
Current for each connector	mA	max	200
Current for each module	mA	max 500	
Input impedance	kΩ	3.9	
Type of input		Software-configurable PNP/NPN	
Protection		Overload and short-o	circuit protected inputs
Connections	8 M8 3-pole female connectors 4 connectors 12 pins with spring clampin		4 connectors 12 pins with spring clamping
Input active signals		One LED for each input	One LED for each output

NB: Digital terminal block inputs are available from software version 2.16 and file GSDML-V2.32-Metalwork-EB80-20180115

SIGNAL MODULES - S - DIGITAL OUTPUTS

	8 M8 Digital Outputs	16 Digital Input terminal board
	Corresponding to power voltage	
mΑ	max	500
mA	max 3	3000
	Software-configurable PNP/NPN	
	Overload and short-circuit protected inputs	Overload and short-circuit protected outputs
	8 M8 3-pole female connectors	4 connectors 12 pins with spring clamping
	One LED for	each output
		mA Corresponding to max mA mA Software-configu Overload and short-circuit protected inputs 8 M8 3-pole female connectors

NB: Digital terminal block outputs are available from software version 2.16 and file GSDML-V2.32-Metalwork-EB80-20180115

^{***} IMPORTANT! Voltage greater than 32VDC will damage the system irreparably.

SIGNAL MODULES - S - DIGITAL OUTPUTS + ELECTRICAL POWER SUPPLY

TECHNICAL DATA		6 M8 Digital Outputs + Electrical power supply	
BUS Supply voltage range	VDC	12 - 10% 24 + 30%	
Digital OUT Supply voltage range	VDC	12 - 10% 24 +30%	
Minimum operating voltage	VDC	10.8 *	
Maximum operating voltage	VDC	31.2	
Maximum admissible voltage	VDC	32 ***	
Output voltage		Corresponding to power voltage	
Current for each connector	mΑ	max 1000	
Current for each module	mΑ	max 4000	
Type of output		Software-configurable PNP/NPN	
Protection		Overload and short-circuit protected inputs	
Connections		6 M8 3-pole female connectors for Signals	
		1 M8 4-pole male connector for Supply	
Input active signals		One LED for each input	

^{*} Minimum voltage 10.8VDC required at solenoid pilots. Check the minimum voltage at the power suply output using the calculations see page 39.

*** IMPORTANT! Voltage greater than 32VDC will damage the system irreparably.

SIGNAL MODULES - S - 16 DIGITAL INPUTS /OUTPUTS CONFIGURABLE

TECHNICAL DATA		8 - M8 4 poles connectors	8 - M12 5 poles connectors
Supply voltage		Corresponding to power voltage	
Current for each connector	mA	max 1000	
Current for each module	mA	max	3000
Current for each output	mA	max	500
Type of output		Př	NP
Input impedance	kΩ	3	.9
Type of input		Pr	NP
Protection	Overload and short-circuit protected inputs /outputs		t protected inputs /outputs
Connections		8 M8 4-pole female connectors	8 M12 5-pole female connectors
Input active signals		One LED for each input	
Output active signals		One LED for each output	
Default configuration	Port X1X8 Digital inputs		Digital inputs
Port X9X16 Digital outputs		Digital outputs	
Encoder Configuration			
Type of input		Pl	NP
Input active signals		>	12
Input not active signals	ignals <12		12
Maximum Frequency	300		00
Value format		32 bit (DWORD)	
Maximum count		4.294.967.295	

NB: The 16 configurable digital Input Output signal modules are available from software version 4.00 and GSDML-V2.33-Metalwork-EB80-20240201

SIGNAL MODULES - S - ANALOGUE INPUTS

TECHNICAL DATA		4 M8 Analogue Inputs
Sensor supply voltage		Corresponding to power voltage
Current for each connector	mA	max 200
Current for each module	mA	max 650
Type of input, software configurable		0/10 VDC; 0/5 VDC; +/-10 VDC; +/-5 VDC; 4/20 mA; 0/20 mA
Protection		Overload and short-circuit protected inputs
Connections		4 M8 4-pin female connectors
Local diagnostic signal via LED		Overload, short-circuit or type of input
		not complying with the configuration
Digital convert resolution		15 bit + prefix

SIGNAL MODULES - S - ANALOGUE OUTPUTS

TECHNICAL DATA		4 M8 Analogue Output
Supply voltage for devices		Corresponding to power voltage
Current for each connector	mA	max 200
Current for each module	mA	max 650
Type of output		0/10 VDC; 0/5 VDC; +/-10 VDC; +/-5 VDC; 4/20 mA; 0/20 mA
Protection		Overload and short-circuit protected outputs
Connections		4 M8 4-pole female connectors
Local diagnostic signal via LED		Overload, short-circuit or type of connection
		not complying with the configuration
Digital convert resolution		15 bit + prefix
_		

SIGNAL MODULES - S - ANALOGUE INPUTS FOR TEMPERATURE MEASUREMENT

TECHNICAL DATA		4 M8 analogue Inputs for temperature measurement		
Sensors supply voltage		Corresponding to the supply voltage		
Maximum input voltage	VDC	30		
Sensor type (RTD)				
platinum (-200 to +850°C)		Pt100, $Pt200$, $Pt500$, $Pt1000$ (TK = 0.00385 and TK = 0.00391)		
nichel (-60 to +180°C)		Ni100, Ni120, Ni500, Ni1000 (TK = 0.00618)		
Connections type (RTD)		2, 3 or 4-wire		
Type of thermocouple (TC)		J, E, T, K, N, S, B, R		
Cold junction compensation for thermocouples				
internal		With internal electronic sensor		
external		An external PT 1000 sensor connected to the M8 connector of the thermocouple is needed		
Temperature range	°C	- 200 to + 800		
	°F	- 328 to + 1472		
Digital convert resolution 15		15 bit + prefix		
Max error compared to ambient temperature		±0.5% (TC)		
		±0.06% (RTD)		
Max. basic error (ambient T 25°C)		±0.4% (TC)		
	°C	±0.6 (with 4-wire RTD with 0.1 resolution)		
	°C	±0.2 (with 4-wire RTD with 0.01 resolution)		
Repeatability (ambient T 25°C)		±0.03%		
Address employment		2 bytes for each input - 8 bytes per module		
Cycle time (module)	ms	240		
Software linearization				
for RTD		Piecewise linear approximation		
for TC		NIST (National Institute of Standards and Technology) Linearization based on		
		ITS-90 scale (International Temperature Scale of 1990) for the thermocouple linearization		
Maximum length of shielded cable m		< 30		
for the connection				
Diagnostics		One LED for each input and reporting to the Master		

NB: Are available from software version 2.16 and file GSDML-V2.32-Metalwork-EB80-20180115

PROPORTIONAL PRESSURE REGULATOR

TECHNICAL DATA		Local out	put version	Series control version			
Fluid		Filtered, unlubricated air. The air must be filtered at least 10 µm					
MIN inlet pressure	bar	Regulation pressure + 0.5 to 1					
MAX inlet pressure	bar	10.5					
Temperature range	°C	from 0 to 50					
Pressure regulation range	bar	from 0.05 to 10 (settable full scale and minimum pressure)					
Flow rate at 6.3 bar ΔP 0.5	NI/min	7	720	850			
Flow rate at 6.3 bar ΔP 1	NI/min	1	000	1250			
Exhaust flow rate at 6.3 bar with	NI/min	380		450			
0.1 bar overpressure							
Exhaust flow rate at 6.3 bar with	NI/min	8	300	1100			
0.5 bar overpressure							
Response time	Volume [cc]	100	1000	100	1000		
from 6 to 7 bar	S	0.1	0.15	0.1	0.15		
from 7 to 6 bar	S	0.1	0.15	0.1	0.15		
Weight	kg	0.6					
Class of protection		IP 65					
Hysteresis		≤ ± 0.2% (Full scale)					
Repeatability		≤ ± 0.2% (Full scale)					
Sensitivity/Dead-band		setting range 10 to 300 mbar					
Output pressure (display version)	Accuracy	$\leq \pm 0.3\%$ (Full scale)					
	Unit of measurement	bar, MPa, psi					
	Minimum resolution						
Temperature characteristics		Max 2 mbar / °C					
Installation position		In any position					
Current absorption		Max 220 mA at 12VDC					
Notes		The features shown refer to the static condition only. With air consumption the pressure may vary.					

NOTES

